-- Program to solve two-fluid equations for ICW problem.
-- global parameters
cfl = 0.95
gasGamma = 5.0/3.0
-- tokamak parameters
Rmaj0 = 3.0 -- [m]
aWall = 1.0 -- [m]
Bmag0 = 4.0 -- [T]
Rmajbgn = 2.83 -- [m]
Zbgn = 0.0 -- [m]
Rmajend = 3.17 -- [m]
Zend = 0.0 -- [m]
cosRmaj = 1.0
cosZ = 0.0
-- number of species and details about them (electron, Deuterium and
-- Helium-3)
nSpecies = 3
chargeNumber = {-1, 1, 2}
massNumber = {0.0005446, 2.0, 3.0}
density0 = {0.400e20, 0.360e20, 0.0}
-- determine Helium 3 density from quasi-neutrality
density0[3] = -(chargeNumber[1]*density0[1] + chargeNumber[2]*density0[2])/chargeNumber[3]
densityWall = {0, 0, 0}
-- some useful quantities
elcCharge = chargeNumber[1]*Lucee.ElementaryCharge
elcMass = massNumber[1]*Lucee.ProtonMass
ionDCharge = chargeNumber[2]*Lucee.ElementaryCharge
ionDMass = massNumber[2]*Lucee.ProtonMass
ionH3Charge = chargeNumber[3]*Lucee.ElementaryCharge
ionH3Mass = massNumber[3]*Lucee.ProtonMass
length = math.sqrt((Rmajend-Rmajbgn)^2+(Zend-Zbgn)^2)
if (cosZ==0.0) then
xRangeBgn = Rmajbgn
xRangeEnd = Rmajend
elseif (cosRmaj == 0.0) then
xRangeBgn = Zbgn
xRangeEnd = Zend
else
xRangeBgn = 0.0
xRangeEnd = length
end
xlower = xRangeBgn
xupper = xRangeEnd
nx = 400
-- compute coordinate of interior last edge
dx = (xupper-xlower)/nx
xLastEdge = xupper-dx
xFirstEdge = xlower+dx
driveF = 40.5e6 -- [Hz]
driveOmega = 2*Lucee.Pi*driveF -- [r/s]
-- computational domain
grid = Grid.RectCart1D {
lower = {xlower},
upper = {xupper},
cells = {nx},
}
-- solution: this has 6 additional components to store the static EM
-- field
q = DataStruct.Field1D {
onGrid = grid,
numComponents = 5*nSpecies+8+6,
ghost = {2, 2},
}
q:clear(0.0)
-- updated solution: this has 6 additional components to store the
-- static EM field
qNew = DataStruct.Field1D {
onGrid = grid,
numComponents = 5*nSpecies+8+6,
ghost = {2, 2},
}
qNew:clear(0.0)
-- create duplicate copy in case we need to take step again
qNewDup = qNew:duplicate()
-- indices for each subsystem
es,ee, ds,de, h3s,h3e, ems,eme, sebs,sebe = 0,5, 5,10, 10,15, 15,23, 23,29
-- create aliases to various sub-system
elcFluid = q:alias(es, ee) -- electron
ionDFluid = q:alias(ds, de) -- Deuterium
ionH3Fluid = q:alias(h3s, h3e) -- Helium-3
emField = q:alias(ems, eme) -- Em field
elcFluidNew = qNew:alias(es, ee) -- electron
ionDFluidNew = qNew:alias(ds, de) -- Deuterium
ionH3FluidNew = qNew:alias(h3s, h3e) -- Helium-3
emFieldNew = qNew:alias(ems, eme) -- Em field
-- initialize various species
function initSpeciesElc(x,y,z)
local spIdx = 1 -- electrons
-- compute location corresponding to x in tokamak
local Rmajor = Rmajbgn + (x-xRangeBgn)*cosRmaj
local Z = Zbgn + (x-xRangeBgn)*cosZ
local Rminor = math.sqrt((Rmajor-Rmaj0)^2 + Z^2)
local densExp0 = 2.0
local densExpWall = 1.0
local fDensProfile = (1-(Rminor/aWall)^densExp0)^densExpWall
-- now compute number density
local ns = fDensProfile*(density0[spIdx]-densityWall[spIdx]) + densityWall[spIdx]
local ts = 0.01*Lucee.Ev2Kelvin -- temperature [K]
local ps = ns*Lucee.BoltzmannConstant*ts
return massNumber[spIdx]*Lucee.ProtonMass*ns, 0, 0, 0, ps/(gasGamma-1)
end
elcFluid:set(initSpeciesElc)
function initSpeciesIonD(x,y,z)
local spIdx = 2 -- Deuterium
-- compute location corresponding to x in tokamak
local Rmajor = Rmajbgn + (x-xRangeBgn)*cosRmaj
local Z = Zbgn + (x-xRangeBgn)*cosZ
local Rminor = math.sqrt((Rmajor-Rmaj0)^2 + Z^2)
local densExp0 = 2.0
local densExpWall = 1.0
local fDensProfile = (1-(Rminor/aWall)^densExp0)^densExpWall
-- now compute number density
local ns = fDensProfile*(density0[spIdx]-densityWall[spIdx]) + densityWall[spIdx]
local ts = 0.01*Lucee.Ev2Kelvin -- temperature [K]
local ps = ns*Lucee.BoltzmannConstant*ts
return massNumber[spIdx]*Lucee.ProtonMass*ns, 0, 0, 0, ps/(gasGamma-1)
end
ionDFluid:set(initSpeciesIonD)
function initSpeciesIonH3(x,y,z)
local spIdx = 3 -- Helium-3
-- compute location corresponding to x in tokamak
local Rmajor = Rmajbgn + (x-xRangeBgn)*cosRmaj
local Z = Zbgn + (x-xRangeBgn)*cosZ
local Rminor = math.sqrt((Rmajor-Rmaj0)^2 + Z^2)
local densExp0 = 2.0
local densExpWall = 1.0
local fDensProfile = (1-(Rminor/aWall)^densExp0)^densExpWall
-- now compute number density
local ns = fDensProfile*(density0[spIdx]-densityWall[spIdx]) + densityWall[spIdx]
local ts = 0.01*Lucee.Ev2Kelvin -- temperature [K]
local ps = ns*Lucee.BoltzmannConstant*ts
return massNumber[spIdx]*Lucee.ProtonMass*ns, 0, 0, 0, ps/(gasGamma-1)
end
ionH3Fluid:set(initSpeciesIonH3)
-- alias to static magnetic field
staticEB = q:alias(sebs, sebe)
function initStaticEB(x,y,z)
-- compute location corresponding to x in tokamak
local Rmajor = Rmajbgn + (x-xRangeBgn)*cosRmaj
local Z = Zbgn + (x-xRangeBgn)*cosZ
local Rminor = math.sqrt((Rmajor-Rmaj0)^2 + Z^2)
local densExp0 = 2.0
local densExpWall = 1.0
local fBfieldProfile = Rmaj0/Rmajor
local Bz = Bmag0*fBfieldProfile
return 0.0, 0.0, 0.0, 0.1*Bz, 0.0, Bz
end
staticEB:set(initStaticEB)
staticEB:write("staticEB.h5")
-- copy initial conditions over
qNew:copy(q)
-- function to write different fields
function writeFields(dumpNo)
elcFluid:write( string.format("elc_%d.h5", dumpNo) )
ionDFluid:write( string.format("D_%d.h5", dumpNo) )
ionH3Fluid:write( string.format("H3_%d.h5", dumpNo) )
emField:write( string.format("EM_%d.h5", dumpNo) )
end
-- write initial conditions
writeFields(0)
-- define various equations to solve
elcEulerEqn = HyperEquation.Euler {
-- gas adiabatic constant
gasGamma = gasGamma,
}
ionDEulerEqn = HyperEquation.Euler {
-- gas adiabatic constant
gasGamma = gasGamma,
}
ionH3EulerEqn = HyperEquation.Euler {
-- gas adiabatic constant
gasGamma = gasGamma,
}
maxwellEqn = HyperEquation.PhMaxwell {
-- speed of light
lightSpeed = Lucee.SpeedOfLight,
-- factor for electric field correction potential speed
elcErrorSpeedFactor = 0.0,
-- factor for magnetic field correction potential speed
mgnErrorSpeedFactor = 0.0,
}
-- updater for electron equations
elcEulerSlvr = Updater.WavePropagation1D {
onGrid = grid,
equation = elcEulerEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "monotonized-centered",
cfl = cfl,
cflm = 1.1*cfl,
}
-- set input/output arrays (these do not change so set it once)
elcEulerSlvr:setIn( {elcFluid} )
elcEulerSlvr:setOut( {elcFluidNew} )
-- updater for Deuterium equations
ionDEulerSlvr = Updater.WavePropagation1D {
onGrid = grid,
equation = ionDEulerEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "monotonized-centered",
cfl = cfl,
cflm = 1.1*cfl,
}
-- set input/output arrays (these do not change so set it once)
ionDEulerSlvr:setIn( {ionDFluid} )
ionDEulerSlvr:setOut( {ionDFluidNew} )
-- updater for Helium-3 equations
ionH3EulerSlvr = Updater.WavePropagation1D {
onGrid = grid,
equation = ionH3EulerEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "monotonized-centered",
cfl = cfl,
cflm = 1.1*cfl,
}
-- set input/output arrays (these do not change so set it once)
ionH3EulerSlvr:setIn( {ionH3Fluid} )
ionH3EulerSlvr:setOut( {ionH3FluidNew} )
-- updater for Maxwell equations
maxSlvr = Updater.WavePropagation1D {
onGrid = grid,
equation = maxwellEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "monotonized-centered",
cfl = cfl,
cflm = 1.1*cfl,
}
-- set input/output arrays (these do not change so set it once)
maxSlvr:setIn( {emField} )
maxSlvr:setOut( {emFieldNew} )
-- Lorentz force on electrons
elcLorentzForce = PointSource.LorentzForce {
-- takes density, momentum and EM fields
inpComponents = {es, es+1, es+2, es+3, ems, ems+1, ems+2, ems+3, ems+4, ems+5},
-- sets electron momentum and energy source
outComponents = {es+1, es+2, es+3, es+4},
-- species charge and mass
charge = elcCharge,
mass = elcMass,
}
-- Lorentz force on electrons from static magnetic field
elcLorentzForceStaticB = PointSource.LorentzForce {
-- takes electron density, momentum and EM fields
inpComponents = {es, es+1, es+2, es+3, sebs, sebs+1, sebs+2, sebs+3, sebs+4, sebs+5},
-- sets momentum and energy source
outComponents = {es+1, es+2, es+3, es+4},
-- species charge and mass
charge = elcCharge,
mass = elcMass,
}
-- electron current contribution to fields
elcCurrent = PointSource.Current {
-- takes electron momentum
inpComponents = {es+1, es+2, es+3},
-- sets current contribution to dE/dt equations
outComponents = {ems, ems+1, ems+2},
-- species charge and mass
charge = elcCharge,
mass = elcMass,
-- premittivity of free space
epsilon0 = Lucee.Epsilon0,
}
-- Lorentz force on Deuterium
ionDLorentzForce = PointSource.LorentzForce {
-- takes density, momentum and EM fields
inpComponents = {ds, ds+1, ds+2, ds+3, ems, ems+1, ems+2, ems+3, ems+4, ems+5},
-- sets electron momentum and energy source
outComponents = {ds+1, ds+2, ds+3, ds+4},
-- species charge and mass
charge = ionDCharge,
mass = ionDMass,
}
-- Lorentz force on Deuterium from static magnetic field
ionDLorentzForceStaticB = PointSource.LorentzForce {
-- takes electron density, momentum and EM fields
inpComponents = {ds, ds+1, ds+2, ds+3, sebs, sebs+1, sebs+2, sebs+3, sebs+4, sebs+5},
-- sets momentum and energy source
outComponents = {ds+1, ds+2, ds+3, ds+4},
-- species charge and mass
charge = ionDCharge,
mass = ionDMass,
}
-- Deuterium current contribution to fields
ionDCurrent = PointSource.Current {
-- takes electron momentum
inpComponents = {ds+1, ds+2, ds+3},
-- sets current contribution to dE/dt equations
outComponents = {ems, ems+1, ems+2},
-- species charge and mass
charge = ionDCharge,
mass = ionDMass,
-- premittivity of free space
epsilon0 = Lucee.Epsilon0,
}
-- Lorentz force on Helium-3
ionH3LorentzForce = PointSource.LorentzForce {
-- takes density, momentum and EM fields
inpComponents = {h3s, h3s+1, h3s+2, h3s+3, ems, ems+1, ems+2, ems+3, ems+4, ems+5},
-- sets electron momentum and energy source
outComponents = {h3s+1, h3s+2, h3s+3, h3s+4},
-- species charge and mass
charge = ionH3Charge,
mass = ionH3Mass,
}
-- Lorentz force on Helium-3 from static magnetic field
ionH3LorentzForceStaticB = PointSource.LorentzForce {
-- takes electron density, momentum and EM fields
inpComponents = {h3s, h3s+1, h3s+2, h3s+3, sebs, sebs+1, sebs+2, sebs+3, sebs+4, sebs+5},
-- sets momentum and energy source
outComponents = {h3s+1, h3s+2, h3s+3, h3s+4},
-- species charge and mass
charge = ionH3Charge,
mass = ionH3Mass,
}
-- Helium-3 current contribution to fields
ionH3Current = PointSource.Current {
-- takes electron momentum
inpComponents = {h3s+1, h3s+2, h3s+3},
-- sets current contribution to dE/dt equations
outComponents = {ems, ems+1, ems+2},
-- species charge and mass
charge = ionH3Charge,
mass = ionH3Mass,
-- premittivity of free space
epsilon0 = Lucee.Epsilon0,
}
-- Current source from an "antenna"
antennaSrc = PointSource.Function {
-- contributes to E_y component
outComponents = {ems+1},
-- source term to apply
source = function (x,y,z,t)
local J0 = 1.0 -- Amps/m^3
local tTurnOn = 5.0/driveF -- source is full magnitude at this time
if (x<xFirstEdge) then
local ramp = math.sin(0.5*Lucee.Pi*math.min(1, t/tTurnOn))
return -J0*ramp^2*math.sin(driveOmega*t)/Lucee.Epsilon0
else
return 0.0
end
end,
}
-- updater to solve ODEs for source-term splitting scheme
sourceSlvr = Updater.GridOdePointIntegrator1D {
onGrid = grid,
-- terms to include in integration step
terms = {elcLorentzForce, elcCurrent, elcLorentzForceStaticB,
ionDLorentzForce, ionDCurrent, ionDLorentzForceStaticB,
ionH3LorentzForce, ionH3Current, ionH3LorentzForceStaticB,
antennaSrc},
}
-- set input/output arrays (these do not change so set it once)
sourceSlvr:setOut( {qNew} )
-- function to take one time-step
function solveTwoFluidSystem(tCurr, t)
-- advance electrons
elcEulerSlvr:setCurrTime(tCurr)
elcStatus, elcDtSuggested = elcEulerSlvr:advance(t)
-- advance Deuterium
ionDEulerSlvr:setCurrTime(tCurr)
ionDStatus, ionDDtSuggested = ionDEulerSlvr:advance(t)
-- advance Helium-3
ionH3EulerSlvr:setCurrTime(tCurr)
ionH3Status, ionH3DtSuggested = ionH3EulerSlvr:advance(t)
-- advance fields
maxSlvr:setCurrTime(tCurr)
maxStatus, maxDtSuggested = maxSlvr:advance(t)
-- check if any updater failed
local status, dtSuggested = true, t-tCurr
if ( (elcStatus == false) or (ionDStatus == false) or (ionH3Status == false) or (maxStatus == false) ) then
status = false
dtSuggested = math.min(elcDtSuggested, ionDDtSuggested, ionH3DtSuggested, maxDtSuggested)
else
status = true
dtSuggested = math.min(elcDtSuggested, ionDDtSuggested, ionH3DtSuggested, maxDtSuggested)
end
-- update source terms
if (status) then
sourceSlvr:setCurrTime(tCurr)
sourceSlvr:advance(t)
end
return status, dtSuggested
end
-- advance solution from tStart to tEnd, using optimal time-steps.
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
local nanOccured = false
while true do
-- copy qNew in case we need to take this step again
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format(" Taking step %d at time %g with dt %g", step, tCurr, myDt))
-- advance fluids and fields
status, dtSuggested = solveTwoFluidSystem(tCurr, tCurr+myDt)
if (dtSuggested < myDt) then
-- time-step too large
print (string.format(" ** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
myDt = dtSuggested
qNew:copy(qNewDup)
else
-- apply outflow BCs
qNew:applyCopyBc(0, "lower")
qNew:applyCopyBc(0, "upper")
-- check if a nan occured
if (qNew:hasNan()) then
print (string.format(" ** Nan occured at %g! Stopping simulation", tCurr))
nanOccured = true
break
end
-- copy updated solution back
q:copy(qNew)
tCurr = tCurr + myDt
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested, nanOccured
end
dtSuggested = 100.0 -- initial time-step to use (this will be discarded and adjusted to CFL value)
-- parameters to control time-stepping
tStart = 0.0
tEnd = 200/driveF
nFrames = 190
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
-- main loop
for frame = 1, nFrames do
print (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
-- advance solution between frames
dtSuggested, nanOccured = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
-- write out data
writeFields(frame)
if (nanOccured) then
-- no need to continue if nan has occured
break
end
tCurr = tCurr+tFrame
print ("")
end