-- Input file to solve transverse magnetic mode Maxwell equations
-- define some globals constants
lowerx = 0.0
lowery = 0.0
upperx = 80.0
uppery = 40.0
cellsx = 320
cellsy = 160
light_speed = Lucee.SpeedOfLight
-- cell spacing
dx = (upperx-lowerx)/cellsx
dy = (uppery-lowery)/cellsy
grid = Grid.RectCart2D {
lower = {lowerx, lowery},
upper = {upperx, uppery},
cells = {cellsx, cellsy},
}
Elc = DataStruct.Field2D {
-- (electric field is stored on edges)
onGrid = grid,
-- [Ex, Ey, Ez]
numComponents = 3,
ghost = {1, 1},
}
ElcNew = DataStruct.Field2D {
onGrid = grid,
-- [Ex, Ey, Ez]
numComponents = 3,
ghost = {1, 1},
}
Ex = ElcNew:alias(0, 1)
Ey = ElcNew:alias(1, 2)
Ez = ElcNew:alias(2, 3)
Mgn = DataStruct.Field2D {
-- (magnetic field is stored on faces)
onGrid = grid,
-- [Bx, By, Bz]
numComponents = 3,
ghost = {1, 1},
}
Mgn:clear(0.0)
Bx = Mgn:alias(0, 1)
By = Mgn:alias(1, 2)
Bz = Mgn:alias(2, 3)
MgnNew = DataStruct.Field2D {
onGrid = grid,
-- [Bx, By, Bz]
numComponents = 3,
ghost = {1, 1},
}
MgnNew:clear(0.0)
-- create duplicates in case we need to take step again
ElcDup = ElcNew:duplicate()
MgnDup = MgnNew:duplicate()
function initEz(x, y, z)
local m, n = 8, 5
local a = m*Lucee.Pi/(upperx-lowerx)
local b = n*Lucee.Pi/(uppery-lowery)
local xez = x-0.5*dx -- Ez is stored at corner
local yez = y-0.5*dy
local Ez = 1.0*math.sin(a*xez)*math.sin(b*yez)
return 0.0, 0.0, Ez
end
-- initialize electric field
Elc:set(initEz)
ElcNew:copy(Elc)
-- write initial conditions
Elc:write("electricField_0.h5")
-- updater for electric field
elcUpdate = Updater.EdgeFaceCurl2D {
onGrid = grid,
-- ElcNew = Elc + c^2*dt*curl(Mgn)
alpha = light_speed^2,
-- speed of propagation
speed = light_speed,
-- CFL numbers
cfl = 0.45,
}
-- set input/out arrays (these do not change so set it once)
elcUpdate:setIn( {Elc, Mgn} )
elcUpdate:setOut( {ElcNew} )
-- updater for magnetic field
mgnUpdate = Updater.FaceEdgeCurl2D {
onGrid = grid,
-- MgnNew = Mgn - dt*curl(ElcNew)
alpha = -1.0,
-- speed of propagation
speed = light_speed,
-- CFL numbers
cfl = 0.45,
}
-- set input/out arrays (these do not change so set it once)
mgnUpdate:setIn( {Mgn, ElcNew} )
mgnUpdate:setOut( {MgnNew} )
-- electric field BCs on right
bcElcRgt = BoundaryCondition.Const { components = {0, 1, 2}, values = {0, 0, 0} }
bcElcTop = BoundaryCondition.Const { components = {0, 1, 2}, values = {0, 0, 0} }
bcRight = Updater.Bc2D {
onGrid = grid,
-- boundary conditions to apply
boundaryConditions = {bcElcRgt},
-- direction to apply
dir = 0,
-- edge to apply on
edge = "upper",
}
-- set input/output arrays (these do not change so set it once)
bcRight:setOut( {ElcNew} )
bcTop = Updater.Bc2D {
onGrid = grid,
-- boundary conditions to apply
boundaryConditions = {bcElcTop},
-- direction to apply
dir = 1,
-- edge to apply on
edge = "upper",
}
-- set input/output arrays (these do not change so set it once)
bcTop:setOut( {ElcNew} )
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
-- main loop
while true do
-- copy data in case we need to take step again
ElcDup:copy(Elc)
MgnDup:copy(Mgn)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
Lucee.logInfo (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
-- apply BCs on magnetic fields
Mgn:applyCopyBc(0, "lower")
Mgn:applyCopyBc(1, "lower")
-- update electric field
elcUpdate:setCurrTime(tCurr)
elcStatus, elcDtSuggested = elcUpdate:advance(tCurr+myDt)
-- apply BCs on electric field
bcRight:setCurrTime(tCurr)
bcRight:advance(tCurr+myDt)
bcTop:setCurrTime(tCurr)
bcTop:advance(tCurr+myDt)
-- update magnetic field
mgnUpdate:setCurrTime(tCurr)
mgnStatus, mgnDtSuggested = mgnUpdate:advance(tCurr+myDt)
if ( (elcStatus == false) or (mgnStatus == false) ) then
-- time-step too large
dtSuggested = math.min(elcDtSuggested, mgnDtSuggested)
Lucee.logInfo (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
myDt = dtSuggested
-- copy over data from duplicate
Elc:copy(ElcDup)
Mgn:copy(MgnDup)
else
-- step succeeded, proceed to next step
dtSuggested = math.min(elcDtSuggested, mgnDtSuggested)
Elc:copy(ElcNew)
Mgn:copy(MgnNew)
tCurr = tCurr + myDt
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
-- parameters to control time-stepping
tStart = 0.0
tEnd = 150e-9
-- compute time-step to move magnetic field to dt/2
dtSuggested = math.min( 0.45*dx/light_speed, 0.45*dy/light_speed)
-- apply Bcs to electric field
bcRight:setCurrTime(0.0)
bcRight:advance(0.5*dtSuggested)
bcTop:setCurrTime(0.0)
bcTop:advance(0.5*dtSuggested)
-- advance magnetic field by half time-step
mgnUpdate:setCurrTime(0.0)
mgnStatus, mgnDtSuggested = mgnUpdate:advance(0.5*dtSuggested)
Mgn:copy(MgnNew)
nFrames = 2
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
-- advance solution between frames
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
-- write out data
Elc:write( string.format("electricField_%d.h5", frame) )
Mgn:write( string.format("magneticField_%d.h5", frame) )
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end