-- Program to solve Maxwell equations
-- CFL number
cfl = 0.49
X = 80.0 -- [m]
Y = 40.0 -- [m]
-- computational domain
grid = Grid.RectCart2D {
lower = {0.0, 0.0},
upper = {X, Y},
cells = {160, 80},
}
-- solution
q = DataStruct.Field2D {
onGrid = grid,
-- [Ex, Ey, Ez, Bx, By, Bz, phi_e, phi_m]
numComponents = 8,
ghost = {2, 2},
}
-- updated solution
qNew = DataStruct.Field2D {
onGrid = grid,
-- [Ex, Ey, Ez, Bx, By, Bz, phi_e, phi_m]
numComponents = 8,
ghost = {2, 2},
}
-- create duplicate copy in case we need to take step again
qNewDup = qNew:duplicate()
-- create an alias to in-plane electric field
eFldAlias = qNew:alias(0, 2) -- [Ex, Ey]
-- initial condition to apply
function init(x,y,z)
local m, n = 8, 5
local a = m*Lucee.Pi/X
local b = n*Lucee.Pi/Y
local Ez = 1.0*math.sin(a*x)*math.sin(b*y)
return 0.0, 0.0, Ez, 0.0, 0.0, 0.0, 0.0, 0.0
end
-- apply initial conditions
q:set(init)
qNew:copy(q)
-- write initial conditions
q:write("q_0.h5")
-- define equation to solve
maxwellEqn = HyperEquation.PhMaxwell {
-- speed of light
lightSpeed = Lucee.SpeedOfLight,
-- factor for electric field correction potential speed
elcErrorSpeedFactor = 1.0,
-- factor for magnetic field correction potential speed
mgnErrorSpeedFactor = 1.0,
}
-- updater for Euler equations
maxSlvr = Updater.WavePropagation2D {
onGrid = grid,
equation = maxwellEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "no-limiter",
cfl = cfl,
cflm = cfl*1.01
}
-- set input/output arrays (these do not change so set it once)
maxSlvr:setIn( {q} )
maxSlvr:setOut( {qNew} )
-- boundary condition to apply
bcElc = BoundaryCondition.ZeroTangent { components = {0, 1, 2} }
bcMgn = BoundaryCondition.ZeroNormal { components = {3, 4, 5} }
potBc = BoundaryCondition.Copy { components = {6, 7}, fact = {-1, 1} }
-- create boundary condition object
function createBc(myDir, myEdge)
local bc = Updater.Bc2D {
onGrid = grid,
-- boundary conditions to apply
boundaryConditions = {bcElc, bcMgn, potBc},
-- direction to apply
dir = myDir,
-- edge to apply on
edge = myEdge,
}
bc:setOut( {qNew} )
return bc
end
-- create updaters to apply boundary conditions
bcLeft = createBc(0, "lower")
bcRight = createBc(0, "upper")
bcBottom = createBc(1, "lower")
bcTop = createBc(1, "upper")
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
while true do
-- copy qNew in case we need to take this step again
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
Lucee.logInfo (
string.format(" Taking step %d at time %g with dt %g",
step, tCurr, myDt))
-- set current time
maxSlvr:setCurrTime(tCurr)
-- advance solution
status, dtSuggested = maxSlvr:advance(tCurr+myDt)
if (dtSuggested < myDt) then
-- time-step too large
Lucee.logInfo (
string.format(" ** Time step %g too large! Will retake with dt %g",
myDt, dtSuggested))
myDt = dtSuggested
qNew:copy(qNewDup)
else
-- apply copy BCs on lower and upper edges
bcLeft:advance(tCurr+myDt);
bcRight:advance(tCurr+myDt);
bcBottom:advance(tCurr+myDt);
bcTop:advance(tCurr+myDt);
-- copy updated solution back
q:copy(qNew)
tCurr = tCurr + myDt
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
dtSuggested = 100.0 -- initial suggested time-step
-- parameters to control time-stepping
tStart = 0.0
tEnd = 150e-9
nFrames = 2
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
-- advance solution between frames
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
-- write out data
q:write( string.format("q_%d.h5", frame) )
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end