-- Program to dispersive Euler equations
-- simulation parameters
cfl = 0.9
-- global parameters
charge = 10.0
mass = 1.0
gasGamma = 2.0
Bz = 1.0
lambda = charge/mass
-- computational domain
grid = Grid.RectCart1D {
lower = {0.0},
upper = {1.0},
cells = {200},
}
-- solution (We store 11 components as this allows use of the
-- LorentzForce to compute source term. The field quanties are not
-- evolved.)
q = DataStruct.Field1D {
onGrid = grid,
numComponents = 11,
ghost = {2, 2},
}
-- updated solution
qNew = DataStruct.Field1D {
onGrid = grid,
numComponents = 11,
ghost = {2, 2},
}
-- create duplicate copy in case we need to take step again
qNewDup = qNew:duplicate()
q:clear(0.0) -- zap everything out
-- create aliases to various sub-system
fluid = q:alias(0, 5)
mgnFld = q:alias(8, 11)
fluidNew = qNew:alias(0, 5)
-- initial conditions to apply
function initFluid(x,y,z)
local rho0, p0 = 1.0, 1.0
local U0 = 1e-8 -- velocity perturbation
local nModes = 9
local cs0 = math.sqrt(gasGamma*p0/rho0)
local wc = lambda*Bz
-- sum over modes to use exact solution to initialize problem
local u, rho, v, p = 0.0, 0.0, 0.0, 0.0
for n = 0, nModes do
local kn = 2*Lucee.Pi*(2*n+1)
local wn = math.sqrt(kn^2*cs0^2 + wc^2)
local u1 = - U0/(2*n+1)*math.sin(kn*x)
u = u + u1
rho = rho - kn*rho0/wn*u1
v = v - lambda*Bz/wn*U0/(2*n+1)*math.cos(kn*x)
p = p - gasGamma*kn*p0/wn*u1
end
rho = rho0 + rho
p = p0 + p
return rho, rho*u, rho*v, 0.0, p/(gasGamma-1) + 0.5*rho*(u^2 + v^2)
end
fluid:set(initFluid)
-- "magnetic" field (this is set once and never evolved)
function initField(x,y,z)
return 0.0, 0.0, Bz
end
mgnFld:set(initField)
-- copy initial conditions over
qNew:copy(q)
-- write initial conditions
q:write("q_0.h5")
-- define various equations to solve
eulerEqn = HyperEquation.Euler {
-- gas adiabatic constant
gasGamma = gasGamma,
}
-- updater for electron equations
eulerSlvr = Updater.WavePropagation1D {
onGrid = grid,
equation = eulerEqn,
-- one of no-limiter, min-mod, superbee, van-leer, monotonized-centered, beam-warming
limiter = "van-leer",
cfl = cfl,
cflm = 1.1*cfl,
}
-- set input/output arrays (these do not change so set it once)
eulerSlvr:setIn( {fluid} )
eulerSlvr:setOut( {fluidNew} )
-- Lorentz force on fluid (this works as the source uses the "magnetic field"
-- quanties stored in the qNew field to compute the source terms)
force = PointSource.LorentzForce {
-- takes density, momentum and EM fields
inpComponents = {0, 1, 2, 3, 5, 6, 7, 8, 9, 10},
-- sets momentum and energy source
outComponents = {1, 2, 3, 4},
-- species charge and mass
charge = charge,
mass = mass,
}
-- updater to solve ODEs for source-term splitting scheme
sourceSlvr = Updater.GridOdePointIntegrator1D {
onGrid = grid,
-- terms to include in integration step
terms = {force},
}
-- set input/output arrays (these do not change so set it once)
sourceSlvr:setOut( {qNew} )
-- function to take one time-step
function solveSystem(tCurr, t)
-- advance fluids
eulerSlvr:setCurrTime(tCurr)
status, dtSuggested = eulerSlvr:advance(t)
-- update source terms
if (status) then
sourceSlvr:setCurrTime(tCurr)
sourceSlvr:advance(t)
end
return status, dtSuggested
end
myDt = 100.0 -- initial time-step to use (this will be discarded and adjusted to CFL value)
-- parameters to control time-stepping
tStart = 0.0
tEnd = 3.0
tCurr = tStart
step = 1
-- main loop
while true do
-- copy qNew in case we need to take this step again
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
-- advance fluids
status, dtSuggested = solveSystem(tCurr, tCurr+myDt)
if (dtSuggested < myDt) then
-- time-step too large
print (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
myDt = dtSuggested
qNew:copy(qNewDup)
else
-- apply periodic BCs
qNew:applyPeriodicBc(0)
-- copy updated solution back
q:copy(qNew)
tCurr = tCurr + myDt
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
-- write final solution
q:write("q_1.h5")