-- Input file for RTE solution in homogeneous slab
-- define globals for use elsewhere
globals = {tau0 = 1.0}
-- top-level simulation object
simulation = Solver.RteHomogeneousSlab {
-- number of phase function coefficients (degree of anisotropy)
L = 8,
-- number of quadrature points in each hemisphere
N = 64,
-- cosine of incident angle
mu0 = 0.5,
-- beam flux: downward irradiance is mu0*pi*flux
flux = 1.0,
-- optical depth of slab
tau0 = globals.tau0,
-- albedo of single scattering
albedo = 0.95,
-- number of azimuthal modes
numModes = 9,
-- phase function: Mie scattering from spherical particles.
-- Size parameter \alpha = 2, index of refraction m=1.33
phaseFunction = RtePhaseFunction.PlCoeffs {
coeffs = {
1.0, 2.00916, 1.56339, 0.67407,
0.22215, 0.04725, 0.00671, 0.00068, 0.00005
}
},
-- set of dummy nodes at which to compute radiances
dummyNodes = {
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
},
-- optical depths at which outputs are to be computed
tauRadOut = {
0.0, globals.tau0/20, globals.tau0/10, globals.tau0/5,
globals.tau0/2, 3*globals.tau0/4, globals.tau0
},
-- irradiance moments to compute
irradOut = {0, 1},
-- optical depths at which irradiance are to be computed
tauIrradOut = {
0.0, globals.tau0/20, globals.tau0/10, globals.tau0/5,
globals.tau0/2, 3*globals.tau0/4, globals.tau0
}
}
-- run simulation (time is irrelevant in this case)
res = simulation:advance(1.0)
-- write data
simulation:write("sol", 1)