-- Input file for Poisson bracket operator
-- polynomial order
polyOrder = 2
-- cfl number to use
cfl = 0.2/(2*polyOrder+1)/64
-- grid on which equations are to be solved
grid = Grid.RectCart1D {
lower = {0},
upper = {2*Lucee.Pi},
cells = {4},
}
-- create FEM nodal basis
basis = NodalFiniteElement1D.Lobatto {
-- grid on which elements should be constructured
onGrid = grid,
-- polynomial order in each cell
polyOrder = polyOrder,
}
-- solution
q = DataStruct.Field1D {
onGrid = grid,
numComponents = basis:numNodes(),
ghost = {2, 2},
}
-- for RK time-stepping
q1 = DataStruct.Field1D {
onGrid = grid,
numComponents = basis:numNodes(),
ghost = {2, 2},
}
-- updated solution
qNew = DataStruct.Field1D {
onGrid = grid,
numComponents = basis:numNodes(),
ghost = {2, 2},
}
-- duplicate for use in time-stepping
qNewDup = qNew:duplicate()
-- updater to apply initial conditions
initField = Updater.ProjectOnNodalBasis1D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = false, -- In DG, common nodes are not shared
-- function to use for initialization
evaluate = function (x,y,z,t)
return math.sin(x)
end
}
initField:setOut( {q} )
-- initialize
initField:advance(0.0) -- time is irrelevant
-- updater to solve diffusion equation
diffSolver = Updater.HyperDiffusion1D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- diffusion coefficent
diffusionCoeff = 1.0,
-- CFL number
cfl = cfl,
}
-- apply boundary conditions
function applyBc(fld)
fld:applyPeriodicBc(0)
end
applyBc(q)
qNew:copy(q)
-- write initial conditions
q:write("q_0.h5")
-- solve advection equation
function solveDiffusion(curr, dt, qIn, qOut)
diffSolver:setCurrTime(curr)
diffSolver:setIn( {qIn} )
diffSolver:setOut( {qOut} )
return diffSolver:advance(curr+dt)
end
-- function to take a time-step using SSP-RK3 time-stepping scheme
function rk3(tCurr, myDt)
-- RK stage 1
local myStatus, myDtSuggested = solveDiffusion(tCurr, myDt, q, q1)
if (myStatus == false) then
return myStatus, myDtSuggested
end
applyBc(q1)
-- RK stage 2
local myStatus, myDtSuggested = solveDiffusion(tCurr, myDt, q1, qNew)
if (myStatus == false) then
return myStatus, myDtSuggested
end
q1:combine(3.0/4.0, q, 1.0/4.0, qNew)
applyBc(q1)
-- RK stage 3
local myStatus, myDtSuggested = solveDiffusion(tCurr, myDt, q1, qNew)
if (myStatus == false) then
return myStatus, myDtSuggested
end
q1:combine(1.0/3.0, q, 2.0/3.0, qNew)
applyBc(q1)
q:copy(q1)
return myStatus, myDtSuggested
end
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
local status, dtSuggested
while tCurr<=tEnd do
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
status, dtSuggested = rk3(tCurr, myDt)
if (status == false) then
-- time-step too large
print (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
qNew:copy(qNewDup)
myDt = dtSuggested
else
tCurr = tCurr + myDt
myDt = dtSuggested
step = step + 1
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
-- write data to H5 file
function writeFields(frame)
q:write( string.format("q_%d.h5", frame) )
end
-- parameters to control time-stepping
tStart = 0.0
tEnd = 1.0
dtSuggested = 0.1*tEnd -- initial time-step to use (will be adjusted)
nFrames = 1
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
writeFields(frame)
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end