-- Input file for Poisson bracket operator
-- polynomial order
polyOrder = 1
-- cfl number to use
cfl = 0.2/2
-- number of cells
NX, NY = 32, 1
-- extent of grid
LX, LY = 2*Lucee.Pi, 1.0
-- advection speeds
ux, uy = 1.0, 0.0
-- diffusion coefficient
alpha = 0.1
-- grid spacing
dx = LX/NX
dy = LY/NY
-- compute time-steps for hyperbolic and parabolic update
dtH = cfl*dx/math.max(ux,uy)
dtP = 0.00963829
Lucee.logInfo(string.format("Hyperbolic time-step is %g", dtH))
Lucee.logInfo(string.format("Parabolic time-step is %g\n", dtP))
-- grid on which equations are to be solved
grid = Grid.RectCart2D {
lower = {0, 0},
upper = {LX, LY},
cells = {NX, NY},
}
-- create FEM nodal basis
basis = NodalFiniteElement2D.Serendipity {
-- grid on which elements should be constructured
onGrid = grid,
-- polynomial order in each cell. One of 1, 2 or 3. Corresponding
-- number of nodes are 2, 3, or 4.
polyOrder = polyOrder,
}
-- number of nodes per cell for DG fields
numDgNodesPerCell = basis:numNodes()
-- solution
q = DataStruct.Field2D {
onGrid = grid,
numComponents = numDgNodesPerCell,
ghost = {2, 2},
}
-- for RK time-stepping
q1 = DataStruct.Field2D {
onGrid = grid,
numComponents = numDgNodesPerCell,
ghost = {2, 2},
}
qDiv = DataStruct.Field2D {
onGrid = grid,
numComponents = numDgNodesPerCell,
ghost = {2, 2},
}
-- updated solution
qNew = DataStruct.Field2D {
onGrid = grid,
numComponents = numDgNodesPerCell,
ghost = {2, 2},
}
-- duplicate for use in time-stepping
qNewDup = qNew:duplicate()
-- to store gradients
gradQ = DataStruct.Field2D {
onGrid = grid,
numComponents = 2*numDgNodesPerCell,
ghost = {2, 2},
}
-- updater to apply initial conditions
initField = Updater.EvalOnNodes2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = false, -- In DG, common nodes are not shared
-- function to use for initialization
evaluate = function (x,y,z,t)
return math.sin(x)
end
}
initField:setOut( {q} )
-- initialize
initField:advance(0.0) -- time is irrelevant
-- define equation to solve
advectionEqn = HyperEquation.Advection {
-- advection velocity
speeds = {1.0, 0.0, 0.0}
}
-- updater to solve hyperbolic equations
advectSlvr = Updater.NodalDgHyper2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- equation system to solver
equation = advectionEqn,
-- CFL number
cfl = cfl,
}
-- gradient equation
gradEqn = HyperEquation.GradAuxFlux2D {
-- coefficient for gradient
coefficient = alpha,
}
-- divergence equation
divEqn = HyperEquation.DivAuxFlux2D {
}
-- updater to compute gradients
gradSlvr = Updater.NodalDgHyper2D {
onGrid = grid,
-- update-type
onlyIncrement = true,
-- basis functions to use
basis = basis,
-- equation system to solver
equation = gradEqn,
-- CFL number
cfl = cfl,
}
-- updater to compute divergence
divSlvr = Updater.NodalDgHyper2D {
onGrid = grid,
-- update-type
onlyIncrement = true,
-- basis functions to use
basis = basis,
-- equation system to solver
equation = divEqn,
-- CFL number
cfl = cfl,
}
-- apply boundary conditions
function applyBc(fld)
fld:applyPeriodicBc(0)
fld:applyPeriodicBc(1)
end
applyBc(q)
qNew:copy(q)
-- write initial conditions
q:write("q_0.h5")
-- solve advection equation
function solveAdvection(curr, dt, qIn, qOut)
advectSlvr:setCurrTime(curr)
advectSlvr:setIn( {qIn} )
advectSlvr:setOut( {qOut} )
return advectSlvr:advance(curr+dt)
end
-- compute gradients
function calcGradient(curr, dt, qIn, gradOut)
gradSlvr:setCurrTime(curr)
gradSlvr:setIn( {gradOut, qIn} )
gradSlvr:setOut( {gradOut} )
return gradSlvr:advance(curr+dt)
end
-- compute divergence
function calcDivergence(curr, dt, gradIn, divOut)
divSlvr:setCurrTime(curr)
divSlvr:setIn( {divOut, gradIn} )
divSlvr:setOut( {divOut} )
return divSlvr:advance(curr+dt)
end
-- compute diffusion term contribution
function calcDiffusion(curr, dt, qIn, qDiffOut)
if (dt > dtP) then
-- time-step exceeds CFL from diffusion
return false, 0.99*dtP
end
-- compute gradient of field
calcGradient(curr, dt, qIn, gradQ)
applyBc(gradQ)
-- compute divergence
calcDivergence(curr, dt, gradQ, qDiffOut)
applyBc(qDiffOut)
return true, dtP
end
-- function to take a time-step using SSP-RK3 time-stepping scheme
function rk3(tCurr, myDt)
-- RK stage 1
local myStatus, myDtSuggested = solveAdvection(tCurr, myDt, q, q1)
-- compute diffusion term
local myDiffStatus, myDiffDtSuggested = calcDiffusion(tCurr, myDt, q, qDiv)
-- accumulate into solution
q1:accumulate(myDt, qDiv)
if (myStatus == false or myDiffStatus == false) then
return myStatus, math.min(myDtSuggested, myDiffDtSuggested)
end
applyBc(q1)
-- RK stage 2
local myStatus, myDtSuggested = solveAdvection(tCurr, myDt, q1, qNew)
-- compute diffusion term
local myDiffStatus, myDiffDtSuggested = calcDiffusion(tCurr, myDt, q1, qDiv)
-- accumulate into solution
qNew:accumulate(myDt, qDiv)
if (myStatus == false or myDiffStatus == false) then
return myStatus, math.min(myDtSuggested, myDiffDtSuggested)
end
q1:combine(3.0/4.0, q, 1.0/4.0, qNew)
applyBc(q1)
-- RK stage 3
local myStatus, myDtSuggested = solveAdvection(tCurr, myDt, q1, qNew)
-- compute diffusion term
local myDiffStatus, myDiffDtSuggested = calcDiffusion(tCurr, myDt, q1, qDiv)
-- accumulate into solution
qNew:accumulate(myDt, qDiv)
if (myStatus == false or myDiffStatus == false) then
return myStatus, math.min(myDtSuggested, myDiffDtSuggested)
end
q1:combine(1.0/3.0, q, 2.0/3.0, qNew)
applyBc(q1)
q:copy(q1)
return myStatus, math.min(myDtSuggested, myDiffDtSuggested)
end
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
local status, dtSuggested
while tCurr<=tEnd do
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
Lucee.logDebug (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
status, dtSuggested = rk3(tCurr, myDt)
if (status == false) then
-- time-step too large
Lucee.logDebug (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
qNew:copy(qNewDup)
myDt = dtSuggested
else
tCurr = tCurr + myDt
myDt = dtSuggested
step = step + 1
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
-- write data to H5 file
function writeFields(frame)
q:write( string.format("q_%d.h5", frame) )
end
-- parameters to control time-stepping
tStart = 0.0
tEnd = 2*Lucee.Pi
dtSuggested = 0.1*tEnd -- initial time-step to use (will be adjusted)
nFrames = 4
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
writeFields(frame)
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end