-- Program to solve Euler equations
-- gas adiabatic index
gasGamma = 1.4
-- computational domain
grid = Grid.RectCart1D {
lower = {0.0},
upper = {1.0},
cells = {100},
}
-- solution
q = DataStruct.Field1D {
onGrid = grid,
-- [rho, rho*u, Er]
numComponents = 3,
ghost = {2, 2},
}
-- updated solution
qNew = DataStruct.Field1D {
onGrid = grid,
-- [rho, rho*u, Er]
numComponents = 3,
ghost = {2, 2},
}
-- create duplicate copy in case we need to take step again
qNewDup = qNew:duplicate()
-- initial condition to apply
function init(x,y,z)
xs = 0.4
rhol, ul, pl = 5.99924, 19.5975, 460.894
rhor, ur, pr = 5.99924, -6.19633, 46.0895
if (x<xs) then
rho, u, press = rhol, ul, pl
else
rho, u, press = rhor, ur, pr
end
return rho, rho*u, press/(gasGamma-1) + 0.5*rho*u*u
end
-- apply initial conditions
q:set(init)
qNew:copy(q)
-- write initial conditions
q:write("q_0.h5")
-- CFL number
mycfl = 0.45
-- updater for Euler equations
eulerSlvr = Updater.MusclHancock1D {
onGrid = grid,
gas_gamma = gasGamma,
cfl = mycfl,
-- one of: average, minmod, superbee, zero, epsilon
limiter = "epsilon",
}
-- set input/output arrays (these do not change so set it once)
eulerSlvr:setIn( {q} )
eulerSlvr:setOut( {qNew} )
myDt = 100.0 -- initial time-step to use (this will be discarded and adjusted to CFL value)
-- parameters to control time-stepping
tStart = 0.0
tEnd = 0.035
tCurr = tStart
step = 1
-- main loop
while true do
-- copy qNew in case we need to take this step again
qNewDup:copy(qNew)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
-- set current time
eulerSlvr:setCurrTime(tCurr)
-- advance solution
status, dtSuggested = eulerSlvr:advance(tCurr+myDt)
if (dtSuggested < myDt) then
-- time-step too large
print (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
myDt = dtSuggested
qNew:copy(qNewDup)
else
-- apply copy BCs on lower and upper edges
qNew:applyCopyBc(0, "lower")
qNew:applyCopyBc(0, "upper")
-- check if a nan occured
if (qNew:hasNan()) then
print (string.format("** Nan occured at %g! Writing out data just before nan", tCurr))
q:write("q_pre_nan.h5")
break
end
-- copy updated solution back
q:copy(qNew)
tCurr = tCurr + myDt
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
-- write final solution
q:write("q_1.h5")