-- Input file for Poisson bracket operator
-- polynomial order
polyOrder = 1
-- cfl number to use
cfl = 0.2
-- domain extents
XL, XU = -1.0, 1.0
VL, VU = -6.0, 6.0
-- number of cells
NX, NV = 64, 128
-- Determine number of global nodes per cell for use in creating CG
-- fields. Note that this looks a bit odd as this not the number of
-- *local* nodes but the number of nodes in each cell to give the
-- correct number of global nodes in fields.
if (polyOrder == 1) then
numCgNodesPerCell = 1
numCgNodesPerCell_1d = 1 -- for spatial basis
elseif (polyOrder == 2) then
numCgNodesPerCell = 3
numCgNodesPerCell_1d = 2 -- for spatial basis
end
-- Determine number of global nodes per cell for use in creating DG
-- fields.
if (polyOrder == 1) then
numDgNodesPerCell = 4
numDgNodesPerCell_1d = 2 -- for spatial basis
elseif (polyOrder == 2) then
numDgNodesPerCell = 8
numDgNodesPerCell_1d = 3 -- for spatial basis
end
-- phase space grid
grid = Grid.RectCart2D {
lower = {XL, VL},
upper = {XU, VU},
cells = {NX, NV},
}
-- create FEM nodal basis
basis = NodalFiniteElement2D.Serendipity {
-- grid on which elements should be constructured
onGrid = grid,
-- polynomial order in each cell. One of 1, or 2. Corresponding
-- number of nodes are 4 and 8.
polyOrder = polyOrder,
}
-- distribution function
distf = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
-- clear out contents
distf:clear(0.0)
-- extra fields for performing RK update
distfNew = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
distf1 = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
-- Hamiltonian
hamil = DataStruct.Field2D {
onGrid = grid,
location = "vertex",
-- numNodesPerCell is number of global nodes stored in each cell
numComponents = 1*numCgNodesPerCell,
ghost = {1, 1},
-- ghost cells to write
writeGhost = {0, 1} -- write extra layer on right to get nodes
}
-- updater to initialize hamiltonian
initHamil = Updater.EvalOnNodes2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = true,
-- function to use for initialization
evaluate = function (x,y,z,t)
local v = y
return v^2/2 + x^2
end
}
initHamil:setOut( {hamil} )
-- initialize potential
initHamil:advance(0.0) -- time is irrelevant
hamil:applyPeriodicBc(0)
function uniformMaxwellian(x,y,z,t)
local v, vt = y, 1.0
return 1/math.sqrt(2*Lucee.Pi*vt^2)*math.exp(-v^2/(2*vt^2))
end
function circle(x,y,z,t)
local v = y
local xc, vc = Lucee.Pi, 1.0
local rad = 0.25
local r = math.sqrt((x-xc)^2 + (v-vc)^2)
if r < rad then
return 1.0
else
return 0.0
end
end
-- updater to initialize distribution function
initDistf = Updater.EvalOnNodes2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = false, -- In DG, common nodes are not shared
-- function to use for initialization
evaluate = function(x,y,z,t)
return uniformMaxwellian(x,y,z,t)
end
}
initDistf:setOut( {distf} )
-- initialize potential
initDistf:advance(0.0) -- time is irrelevant
-- updater for Poisson bracket
pbSlvr = Updater.PoissonBracket {
onGrid = grid,
-- basis functions to use
basis = basis,
-- cfl number to use
cfl = cfl,
-- flux type: one of "upwind" (default) or "central"
fluxType = "upwind",
}
-- spatial grid
grid_1d = Grid.RectCart1D {
lower = {XL},
upper = {XU},
cells = {NX},
}
-- spatial FEM nodal basis
basis_1d = NodalFiniteElement1D.Lobatto {
-- grid on which elements should be constructured
onGrid = grid_1d,
-- polynomial order in each cell. One of 1, or 2. Corresponding
-- number of nodes are 2 and 3.
polyOrder = polyOrder,
}
-- number density
numDensity = DataStruct.Field1D {
onGrid = grid_1d,
location = "vertex",
-- numNodesPerCell is number of global nodes stored in each cell
numComponents = 1*numDgNodesPerCell_1d,
ghost = {1, 1},
}
-- to compute number density
numDensityCalc = Updater.DistFuncMomentCalc1D {
-- 2D phase-space grid
onGrid = grid,
-- 2D phase-space basis functions
basis2d = basis,
-- 1D spatial basis functions
basis1d = basis_1d,
-- desired moment (0, 1 or 2)
moment = 0,
}
-- output is number density
numDensityCalc:setOut( {numDensity} )
-- dynvector for total particle count
totalPtcl = DataStruct.DynVector { numComponents = 1, }
-- to compute total number of particles in domain
totalPtclCalc = Updater.IntegrateNodalField1D {
-- grid for updater
onGrid = grid_1d,
-- basis functions to use
basis = basis_1d,
-- are common nodes shared?
shareCommonNodes = false, -- for DG fields common nodes not shared
}
-- set input field
totalPtclCalc:setIn( {numDensity} )
-- set output dynvector
totalPtclCalc:setOut( {totalPtcl} )
-- ptcl energy
ptclEnergy = DataStruct.Field1D {
onGrid = grid_1d,
location = "vertex",
-- numNodesPerCell is number of global nodes stored in each cell
numComponents = 1*numDgNodesPerCell_1d,
ghost = {1, 1},
}
-- updater to compute ptcl energy
ptclEnergyCalc = Updater.DistFuncMomentCalc1D {
-- 2D phase-space grid
onGrid = grid,
-- 2D phase-space basis functions
basis2d = basis,
-- 1D spatial basis functions
basis1d = basis_1d,
-- desired moment (0, 1 or 2)
moment = 2,
}
-- output is ptcl energy
ptclEnergyCalc:setOut( {ptclEnergy} )
-- dynvector for total ptcl energy
totalPtclEnergy = DataStruct.DynVector { numComponents = 1, }
-- to compute total particle energy
totalPtclEnergyCalc = Updater.IntegrateNodalField1D {
-- grid for updater
onGrid = grid_1d,
-- basis functions to use
basis = basis_1d,
-- are common nodes shared?
shareCommonNodes = false, -- for DG fields common nodes not shared
}
-- set input field
totalPtclEnergyCalc:setIn( {ptclEnergy} )
-- set output dynvector
totalPtclEnergyCalc:setOut( {totalPtclEnergy} )
-- compute moments from distribution function
function calcMoments(curr, dt, distfIn)
numDensityCalc:setCurrTime(curr)
numDensityCalc:setIn( {distfIn} )
numDensityCalc:advance(curr+dt)
numDensity:applyPeriodicBc(0)
ptclEnergyCalc:setCurrTime(curr)
ptclEnergyCalc:setIn( {distfIn} )
ptclEnergyCalc:advance(curr+dt)
ptclEnergy:applyPeriodicBc(0)
end
-- compute initial moments
calcMoments(0.0, 0.0, distf)
-- function to apply boundary conditions
function applyBc(fld)
fld:applyPeriodicBc(0)
fld:applyCopyBc(1, "lower")
fld:applyCopyBc(1, "upper")
end
-- apply BCs to initial conditions
applyBc(distf)
-- write initial conditions
distf:write("distf_0.h5")
numDensity:write("numDensity_0.h5")
-- update Poisson bracket operator
function poissonBracket(curr, dt, distfIn, hamilIn, distfOut)
pbSlvr:setCurrTime(curr)
pbSlvr:setIn( {distfIn, hamilIn} )
pbSlvr:setOut( {distfOut} )
return pbSlvr:advance(curr+dt)
end
-- compute various diagnostics
function calcDiagnostics(curr, dt)
totalPtclCalc:setCurrTime(curr)
totalPtclCalc:advance(curr+dt)
totalPtclEnergyCalc:setCurrTime(curr)
totalPtclEnergyCalc:advance(curr+dt)
end
-- compute initial diagnostics
calcDiagnostics(0.0, 0.0) -- funky?
-- function to take a time-step using SSP-RK3 time-stepping scheme
function rk3(tCurr, myDt)
local status, dtSuggested
-- RK stage 1
status, dtSuggested = poissonBracket(tCurr, myDt, distf, hamil, distf1)
if (status == false) then
return status, dtSuggested
end
applyBc(distf1)
calcMoments(tCurr, myDt, distf1)
-- RK stage 2
status, dtSuggested = poissonBracket(tCurr, myDt, distf1, hamil, distfNew)
if (status == false) then
return status, dtSuggested
end
distf1:combine(3.0/4.0, distf, 1.0/4.0, distfNew)
applyBc(distf1)
calcMoments(tCurr, myDt, distf1)
-- RK stage 3
status, dtSuggested = poissonBracket(tCurr, myDt, distf1, hamil, distfNew)
if (status == false) then
return status, dtSuggested
end
distf1:combine(1.0/3.0, distf, 2.0/3.0, distfNew)
applyBc(distf1)
distf:copy(distf1)
calcMoments(tCurr, myDt, distf)
return status, dtSuggested
end
-- make a duplicate in case we need it
distfDup = distf:duplicate()
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
local step = 1
local tCurr = tStart
local myDt = initDt
local status, dtSuggested
while tCurr<=tEnd do
distfDup:copy(distf)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
status, dtSuggested = rk3(tCurr, myDt)
if (status == false) then
-- time-step too large
print (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
distf:copy(distfDup)
myDt = dtSuggested
else
calcDiagnostics(tCurr, myDt)
tCurr = tCurr + myDt
myDt = dtSuggested
step = step + 1
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
-- write data to H5 files
function writeFields(frame)
distf:write( string.format("distf_%d.h5", frame) )
numDensity:write( string.format("numDensity_%d.h5", frame) )
totalPtcl:write(string.format("totalPtcl_%d.h5", frame) )
totalPtclEnergy:write(string.format("totalPtclEnergy_%d.h5", frame) )
end
-- parameters to control time-stepping
tStart = 0.0
tEnd = 20.0
dtSuggested = 0.1*tEnd -- initial time-step to use (will be adjusted)
nFrames = 100
tFrame = (tEnd-tStart)/nFrames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
writeFields(frame)
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end