-- Input file for Poisson bracket operator
-- polynomial order
polyOrder = 1
-- cfl number to use
cfl = 0.2
-- Determine number of global nodes per cell for use in creating CG
-- fields. Note that this looks a bit odd as this not the number of
-- *local* nodes but the number of nodes in each cell to give the
-- correct number of global nodes in fields.
if (polyOrder == 1) then
numCgNodesPerCell = 1
elseif (polyOrder == 2) then
numCgNodesPerCell = 3
end
-- Determine number of global nodes per cell for use in creating DG
-- fields.
if (polyOrder == 1) then
numDgNodesPerCell = 4
elseif (polyOrder == 2) then
numDgNodesPerCell = 8
end
-- grid on which equations are to be solved
grid = Grid.RectCart2D {
lower = {0, 0},
upper = {1.0, 1.0},
cells = {32, 32},
}
-- create FEM nodal basis
basis = NodalFiniteElement2D.Serendipity {
-- grid on which elements should be constructured
onGrid = grid,
-- polynomial order in each cell. One of 1, or 2. Corresponding
-- number of nodes are 4 and 8.
polyOrder = polyOrder,
}
-- vorticity
chi = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
-- clear out contents
chi:clear(0.0)
-- extra fields for performing RK update
chiNew = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
chi1 = DataStruct.Field2D {
onGrid = grid,
numComponents = 1*numDgNodesPerCell,
ghost = {1, 1},
}
-- potential
phi = DataStruct.Field2D {
onGrid = grid,
location = "vertex",
-- numNodesPerCell is number of global nodes stored in each cell
numComponents = 1*numCgNodesPerCell,
ghost = {1, 1},
-- ghost cells to write
writeGhost = {0, 1} -- write extra layer on right to get nodes
}
-- create updater to initialize potential
initPhi = Updater.EvalOnNodes2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = true,
-- function to use for initialization
evaluate = function (x,y,z,t)
local ux, uy = 1.0, 1.0
return ux*y - uy*x
end
}
initPhi:setOut( {phi} )
-- initialize potential
initPhi:advance(0.0) -- time is irrelevant
-- create updater to initialize vorticity
initChi = Updater.EvalOnNodes2D {
onGrid = grid,
-- basis functions to use
basis = basis,
-- are common nodes shared?
shareCommonNodes = false, -- In DG, common nodes are not shared
-- function to use for initialization
evaluate = function (x,y,z,t)
local xc, yc = 0.5, 0.5
local r2 = (x-xc)^2 + (y-yc)^2
return math.exp(-75*r2)
end
}
initChi:setOut( {chi} )
-- initialize potential
initChi:advance(0.0) -- time is irrelevant
-- total enstrophy diagnostic
totalEnstrophy = DataStruct.DynVector {
-- number of components in diagnostic
numComponents = 1,
}
-- updater to compute total energy
enstrophyCalc = Updater.TotalEnstrophy {
onGrid = grid,
-- basis functions to use
basis = basis,
}
-- set input/output (this never changes, so it once)
enstrophyCalc:setIn( {chi} )
enstrophyCalc:setOut( {totalEnstrophy} )
-- compute initial enstrophy of system
enstrophyCalc:advance(0)
-- apply BC to get ghost correct
chiNew:applyPeriodicBc(0)
chiNew:applyPeriodicBc(1)
-- create updater for Poisson bracket
pbSlvr = Updater.PoissonBracket {
onGrid = grid,
-- basis functions to use
basis = basis,
-- cfl number to use
cfl = cfl,
-- flux type: one of "upwind" (default) or "central"
fluxType = "central",
}
-- write initial value
chi:write("chi_0.h5")
-- function to apply boundary conditions
function applyBc(fld)
fld:applyPeriodicBc(0)
fld:applyPeriodicBc(1)
end
function poissonBracket(curr, dt, chiIn, phiIn, chiOut)
pbSlvr:setCurrTime(curr)
pbSlvr:setIn( {chiIn, phiIn} )
pbSlvr:setOut( {chiOut} )
return pbSlvr:advance(curr+dt)
end
function calcDiagnostics(curr, dt)
enstrophyCalc:setCurrTime(curr)
enstrophyCalc:advance(curr+dt)
end
-- function to take a time-step using RK2 time-stepping scheme
function rk2(tCurr, myDt)
local status, dtSuggested
-- RK stage 1 (chi1 <- chi + L(chi))
status, dtSuggested = poissonBracket(tCurr, myDt, chi, phi, chi1)
-- check if step failed and return immediately if it did
if (status == false) then
return status, dtSuggested
end
-- apply periodic BC
applyBc(chi1)
-- RK stage 2 (chiNew <- chi1 + L(chi1))
status, dtSuggested = poissonBracket(tCurr, myDt, chi1, phi, chiNew)
-- check if step failed and return immediately if it did
if (status == false) then
return status, dtSuggested
end
-- do final update of chi1 <-- 0.5*(chi + chiNew)
chi1:combine(0.5, chi, 0.5, chiNew)
-- apply Bcs
applyBc(chi1)
-- copy over solution
chi:copy(chi1)
return status, dtSuggested
end
-- function to take a time-step using SSP-RK3 time-stepping scheme
function rk3(tCurr, myDt)
local status, dtSuggested
-- RK stage 1 (chi1 <- chi + L(chi))
status, dtSuggested = poissonBracket(tCurr, myDt, chi, phi, chi1)
-- check if step failed and return immediately if it did
if (status == false) then
return status, dtSuggested
end
-- apply BCs
applyBc(chi1)
-- RK stage 2
status, dtSuggested = poissonBracket(tCurr, myDt, chi1, phi, chiNew)
-- check if step failed and return immediately if it did
if (status == false) then
return status, dtSuggested
end
chi1:combine(3.0/4.0, chi, 1.0/4.0, chiNew)
-- apply BCs
applyBc(chi1)
-- RK stage 3
status, dtSuggested = poissonBracket(tCurr, myDt, chi1, phi, chiNew)
-- check if step failed and return immediately if it did
if (status == false) then
return status, dtSuggested
end
chi1:combine(1.0/3.0, chi, 2.0/3.0, chiNew)
-- apply BCs
applyBc(chi1)
-- copy over solution
chi:copy(chi1)
return status, dtSuggested
end
-- make a duplicate in case we need it
chiDup = chi:duplicate()
-- function to advance solution from tStart to tEnd
function advanceFrame(tStart, tEnd, initDt)
-- declare local variables
local step = 1
local tCurr = tStart
local myDt = initDt
local status, dtSuggested
-- main loop
while tCurr<=tEnd do
-- copy chi over
chiDup:copy(chi)
-- if needed adjust dt to hit tEnd exactly
if (tCurr+myDt > tEnd) then
myDt = tEnd-tCurr
end
print (string.format("Taking step %d at time %g with dt %g", step, tCurr, myDt))
-- take a time-step
status, dtSuggested = rk3(tCurr, myDt)
if (status == false) then
-- time-step too large
print (string.format("** Time step %g too large! Will retake with dt %g", myDt, dtSuggested))
-- copy in case current solutions were messed up
chi:copy(chiDup)
myDt = dtSuggested
else
-- compute diagnostics
calcDiagnostics(tCurr, myDt)
tCurr = tCurr + myDt
myDt = dtSuggested
step = step + 1
-- check if done
if (tCurr >= tEnd) then
break
end
end
end
return dtSuggested
end
-- parameters to control time-stepping
tStart = 0.0
tEnd = 1.0
dtSuggested = 0.1*tEnd -- initial time-step to use (will be adjusted)
nFrames = 1
tFrame = (tEnd-tStart)/nFrames -- time between frames
tCurr = tStart
for frame = 1, nFrames do
Lucee.logInfo (string.format("-- Advancing solution from %g to %g", tCurr, tCurr+tFrame))
-- advance solution between frames
dtSuggested = advanceFrame(tCurr, tCurr+tFrame, dtSuggested)
-- write out data
chi:write( string.format("chi_%d.h5", frame) )
totalEnstrophy:write( string.format("totalEnstrophy_%d.h5", frame) )
tCurr = tCurr+tFrame
Lucee.logInfo ("")
end