-- Input file for multimomlinear Tool
local Species = require "Tool.LinearSpecies"
local elcMass = 1
local elcCharge = -1
local ionMass = 1836.2
local ionCharge = 1
local E0 = 0.2 -- Electric field in y-direction
local B0 = 1.0 -- Magentic fiels in z-direction
local v0 = E0*B0/B0^2 -- ExB drift speed
local elcTemp = 0.01 -- electron temperature
local ionTemp = 0.01 -- ion temperature
print(string.format("ExB velocity: %g", v0))
print(string.format("Electron cyclotron frequency: %g", math.abs(elcCharge)*B0/elcMass ))
print(string.format("Electron thermal speed %g", math.sqrt(elcTemp/elcMass)))
print(string.format("Ion thermal speed %g", math.sqrt(ionTemp/ionMass)))
-- Electrons
elc = Species.Isothermal {
mass = elcMass, -- mass
charge = elcCharge, -- charge
density = 1.0, -- number density
velocity = {v0, 0.0, 0.0}, -- velocity vector
temperature = elcTemp, -- temperature
}
-- Ions
ion = Species.Isothermal {
mass = ionMass, -- mass
charge = ionCharge, -- charge
density = 1.0, -- number density
velocity = {0.0, 0.0, 0.0}, -- velocity vector
temperature = ionTemp, -- temperature
ignoreBackgroundField = true, -- ions are demagnetized
}
-- EM field
field = Species.Poisson {
epsilon0 = 1.0, mu0 = 1.0,
electricField = {0.0, E0, 0.0}, -- background electric field
magneticField = {0.0, 0.0, B0}, -- background magnetic field
}
-- list of species to include in dispersion relation
speciesList = { elc, ion }
-- List of wave-vectors for which to compute dispersion relation
kvectors = {}
local kcurr, kmax, NK = 0.0, 10.0, 801
dk = (kmax-kcurr)/(NK-1)
for i = 1, NK do
kvectors[i] = {kcurr, 0.0, 0.0} -- each k-vector is 3D
kcurr = kcurr + dk
end