-- Gkyl ------------------------------------------------------------------------
local Vlasov = require "App.VlasovOnCartGrid"
-- Maxwellian in 1x2v
local function maxwellian2D(n, vx, vy, ux, uy, vth)
local v2 = (vx - ux)^2 + (vy - uy)^2
return n/(2*math.pi*vth^2)*math.exp(-v2/(2*vth^2))
end
vlasovApp = Vlasov.App {
logToFile = true,
tEnd = 100.0, -- end time
nFrame = 200, -- number of output frames
lower = {0.0}, -- configuration space lower left
upper = {2*math.pi}, -- configuration space upper right
cells = {16}, -- configuration space cells
basis = "serendipity", -- one of "serendipity" or "maximal-order"
polyOrder = 2, -- polynomial order
timeStepper = "rk3s4", -- one of "rk2" or "rk3"
-- decomposition for configuration space
decompCuts = {1}, -- cuts in each configuration direction
useShared = true, -- if to use shared memory
-- boundary conditions for configuration space
periodicDirs = {1}, -- periodic directions
-- ions
ions = Vlasov.Species {
charge = 1.0, mass = 1.0,
-- velocity space grid
lower = {-6.0, -6.0},
upper = {6.0, 6.0},
cells = {24, 24},
decompCuts = {1, 1},
-- initial conditions
init = function (t, xn)
local x, vx, vy = xn[1], xn[2], xn[3]
return maxwellian2D(1.0, vx, vy, 0.0, 0.0, 1.0)
end,
diagnosticMoments = { "M0", "M1i", "M2" },
evolve = true, -- evolve species?
},
-- field solver
funcField = Vlasov.FuncField {
emFunc = function (t, xn)
local x = xn[1]
local nu = 0.4567
local B0 = 1.0
local Ex = 0.95*math.sin(x-nu*t)
return Ex, 0.0, 0.0, 0.0, 0.0, B0
end,
evolve = true, -- evolve field?
},
}
-- run application
vlasovApp:run()