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1 General Moment Equations

Each species in a multi-component plasma is described by the Boltzmann equation which describes the
temporal evolution of the particle distribution function in a six dimensional spatial and velocity space and
evolves under the influence of collisions and electromagnetic forces. With the distribution function for
species s, fs(x,v, t), defined such that fs(x,v, t)dxdv is the number of particles in a phase-space volume
element dxdv, the Boltzmann equation may be written as

∂fs

∂t
+ vj

∂fs

∂xj
+

qs
ms

(Ej + εkmjvkBm)
∂fs

∂vj
= Hs (1)

Here E is the electric field, B is the magnetic flux density, qs and ms are the charge and mass of the plasma
species and εkmj is the completely anti-symmetric pseudo-tensor which is defined to be ±1 for even/odd
permutations of (1, 2, 3) and zero otherwise. Summation over repeated indices is assumed.

General moment equations can be derived from the Boltzmann equation. To do this we adopt the fol-
lowing definition for the moments

P
(n)
i1i2...in

≡ m
∫ ∞
−∞

ci1ci2 . . . cinfd
3v (2)

and generalized friction from collisions

R
(n)
i1i2...in

≡ m
∫ ∞
−∞

ci1ci2 . . . cinHd3v (3)

Here, the species index is dropped and c ≡ v−u. With this definition, for example, P (0) = mn(x, t), where
n(x, t) is the number density, P (1)

i = 0, P (2)
ij = Pij , where Pij is the pressure tensor and P (3)

ijk = Qijk,
where Qijk is the heat flux tensor, etc.

The non-conservative form of the general moment equations are as follows. For n = 1 we have

∂tui1 + uj∂jui1 +
1

P (0)
∂jP

(2)
ji1

=
q

m
(Ei1 +Bmukεkmi1) +

1

P (0)
R

(1)
i1
. (4)

For n 6= 1 (including n = 0) we have
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i1i2...in

− 1

P (0)
∂jP
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j[i1
P

(n−1)
i2...in]
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ji1i2...in

+ ∂jujP
(n)
i1i2...in

+ ∂ju[i1P
(n)
i2...in]j

+ uj∂jP
(n)
i1i2...in

=
q

m
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(n)
i2...ink]

+R
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− 1

P (0)
R

(1)
[i1
P

(n−1)
i2...in]

(5)

In these equations square brackets around indices represent the minimal sum over permutations of free
indices needed to yield completely symmetric tensors1.

1For example, u[iEj] = uiEj + ujEi. In general, as the moments are themselves symmetric, one usually only needs to
cyclically permute the free indices and sum to get a symmetric expression.
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The general conservative form of the moment equations can be derived. For this the following total
velocity moments are defined

P(n)
i1i2...in

≡ m
∫ ∞
−∞

vi1vi2 . . . vinfd
3v (6)

and generalized total velocity friction from collisions

R(n)
i1i2...in

≡ m
∫ ∞
−∞

vi1vi2 . . . vinHd3v (7)

With these the general conservative form of the equations are

∂tP(n)
i1...in

+ ∂jP(n+1)
ji1...in

=
q

m
(E[i1P

(n−1)
i2...in]

+Bmεmj[i1P
(n)
i2...inj]

) +R(n)
i1...in

. (8)

2 Ten- and five-moment equations

Consider the special case of the ten-moment equations in which one only retains the evolution of the mo-
ments upto P(3)

ijk ≡ Qijk. These equations are

∂n

∂t
+

∂

∂xj
(nuj) = 0 (9)

m
∂

∂t
(nui) +

∂Pij
∂xj

= nq (Ei + εijkujBk) (10)

∂Pij
∂t

+
∂Qijk

∂xk
= nqu[iEj] +

q

m
ε[iklPkj]Bl (11)

where P(2)
ij ≡ Pij is the pressure-tensor in the lab-frame. Note that the pressure tensor and heat-flux tensor

in lab-frame can be written as

Pij = Pij + nmuiuj (12)

Qijk = Qijk + u[iPjk] − 2nmuiujuk. (13)

Now, the total energy is defined as E ≡ Pii/2, hence we have

E ≡ 1

2
Pii =

3

2
p+

1

2
mnu2 (14)

where p = Pii/3 it the fluid scalar pressure. Hence, taking (half) the trace of Eq. (11) gives the evolution
equation of the total energy

∂E
∂t

+
1

2

∂Qiik

∂xk
= nqu ·E (15)

where from Eq. (13) we have

1

2
Qiik = qk + uk(p+ E) + uiΠik (16)

where qk ≡ Qiik/2 is the heat-flux vector and Πij = Pij − pδij is the viscous stress tensor.
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3 Multi-species BGK operator

For a plasma with multiple species we can generalize the single-species BGK operator as Hs = Hss +∑
r 6=sHsr, where

Hs[fs] = νss
(
fsM − fs

)
; Hsr[fs, f r] = νsr

(
fsrM − fs

)
(17)

where νsr is the collision-frequency of species s with species r and fsM , fsrM are a Maxwellians given by

fsM = ns

( ms

2πT s

)3/2
e−ms(v−us)2/2T s

(18)

fsrM = ns

( ms

2πT sr

)3/2
e−ms(v−usr)2/2T s

(19)

and where usr and T sr.
We can now compute the moments of the BGK operator and obtain the following

ms〈Hs〉 = 0 (20)

ms〈vHs〉 = msns
∑
r 6=s

νsr∆usr (21)

ms〈cicjHs〉 = −Πs
ij

(
νss +

∑
r 6=s

νsr
)

+ nsδij
∑
r 6=s

νsr∆T
sr +msns

∑
r 6=s

νsr∆u
sr
i ∆usrj (22)

ms〈cicjckHs〉 = −Qs
ijk

(
νss +

∑
r 6=s

νsr
)

+
∑
r 6=s

νsr∆u
sr
[i P

s
jk] +msns

∑
r 6=s

νrs∆u
sr
i ∆usrj ∆usrk (23)

where we have defined ∆usr = usr − us and ∆T sr = T sr − T s. Often we need the ms〈vivjHs〉 as its
trace is twice the total (internal plus kinetic) particle energy. From Eqns. (20)–(22) we can show that

ms〈vivjHs〉 = −Πs
ij

(
νss +

∑
r 6=s

νsr
)

+ nsδij
∑
r 6=s

νsr∆T
sr +msns

∑
r 6=s

νsr∆u
sr
i ∆usrj +msns

∑
r 6=s

νsru
s
[i∆u

sr
j] .

(24)

From this, the change in energy due to collisions can be computed by taking the trace:

2∆Es = 3ns
∑
r 6=s

νsr∆T
sr +msns

∑
r 6=s

νsr(|usr|2 − |us|2) (25)

For a two-species plasma, summing the electron and ion contribution, this leads to Eq. (7) in Greene[1].

4 Multi-species Lenard-Bernstein operator

Collisions in plasmas are not well approximated by BGK type operators as these approximate “hard-sphere”
collisions. Instead, in a plasma, the collisions are all near grazing and need a Fokker-Planck type operator.
A simple such operator is the Lenard-Bernstein operator (LBO) which, for multiple species, can be written
asHs = Hss +

∑
r 6=sHsr where

Hss[fs] = νss∇v ·
(
(v − us)fs +

T s

ms
∇vf

s
)

(26)

Hsr[f s, f r] = νsr∇v ·
(
(v − usr)f s +

T sr

ms
∇vf

s
)

(27)
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where νsr is the collision-frequency of species s with species r, and usr and T sr are (yet undetermined)
drift speeds and temperatures. Note that in general, νsr 6= νrs. In fact, we need nsmsνsr = nrmrνrs, which
is essentially a statement that a heavier particle is less affected by collisions than is a lighter particle. For
computing moments it is more convenient to rewrite the cross-species collision term as follows

Hsr[fs, f r] = νsr∇v ·
(
(v − us)f s +

T s

ms
∇vf

s
)
− νsr∆usr · ∇vf

s + νsr
∆T sr

ms
∇2

vf
s. (28)

Note that the first term is now the same form as the self-collision term (except for the different collision
frequency) with the other terms explicitly in the form of relaxation due to intespecies drag and diffusion.

We can now compute the moments of the LBO and obtain the following

ms〈Hs〉 = 0 (29)

ms〈vHs〉 = msns
∑
r 6=s

νsr∆usr (30)

ms〈cicjHs〉 = −2Πs
ij

(
νss +

∑
r 6=s

νsr
)

+ 2nsδij
∑
r 6=s

νsr∆T
sr (31)

ms〈cicjckHs〉 = −3Qs
ijk

(
νss +

∑
r 6=s

νsr
)

+
∑
r 6=s

νsr∆u
sr
[i P

s
jk]. (32)

Often we need ms〈vivjHs〉 as its trace is twice the total (internal plus kinetic) particle energy. From
Eqns. (29)–(31) we can show that

ms〈vivjHs〉 = −2Πs
ij

(
νss +

∑
r 6=s

νsr
)

+ 2nsδij
∑
r 6=s

νsr∆T
sr +msns

∑
r 6=s

νsru
s
[i∆u

sr
j] . (33)

From this, the change in energy due to collisions can be computed by taking the trace:

2∆Es = 6ns
∑
r 6=s

νsr∆T
sr + 2msns

∑
r 6=s

νsru
s
i∆u

sr
i . (34)

Note that this is different than the BGK expression and will hence lead to different expressions than in
Greene’s paper for the intermediate velocities and temperatures.
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