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1 Basic Equations

In this document I derive solutions to Maxwell equations in (potentially coaxial) cylindrical waveguides.
The frequency domain Maxwell equations are

—iwE—-VxB=0 (1)
—iwB+V xE =0. 2)

Here we have assumed speed of light is one. Taking the curl of each equation and eliminating we can
separate the equations for the electric and magnetic fields a

—wWE4+VXVXE=0 3)
—W’B+VxVxB=0. 4

As the free-space electric and magnetic fields are divergence free we can write these equations as

—w’E-V?’E=0 (5)
—w?’B - V?’B =0. (6)

As the equations satisfied by the fields are the same, denote them by F. In cylindrical coordinates (7, ¢, z)
we can write them in component form as
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where the Laplacian acting on a scalar is defined as
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Let us examine the z component equation first. This can be written as
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ITo easily follow these derivations it is important to have the NRL Plasma Formulary at hand, specially the pages on vector identities.



We will assume solutions of the form F (r, ¢, z) = F,(r)e!™%e?*n* where k,, = 2mn/L., where L, is the
length of the cylinder. This leads to an ODE for F),
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dr? dr

+ [r?(w® — k) —m?|F. =0. (12)

The solution to this equation can be written in terms of Bessel functions

F.(r) = adm [rv/w? — k2] + Yy, [ry/w? — k2] (13)

where J,,, and Y,, are Bessel functions of the first and second kind respectively, and a and b are constants.

2 Transverse Magnetic Mode

Now, consider applying this solution to determine the electric field inside a coaxial cylinder with inner and
outer radii 7y > 0 and r; > ry. The boundary conditions for tangential electric field give

E.(ro) = E,(r1) =0. (14)

This leads to two equation

E.(ro) = aJp [rov/w? — k2] + bYp, [roy/w? — k2] =0 (15)
E.(r1) = aJp [riv/w? — k2] + b, [r1v/w? — k2] =0 (16)

for the three unknowns a, b and w. For non-trivial solutions this means that the frequency w must be the
roots of the equation

I, [rm/wQ — k,ﬂYm [rlx/wQ — k,ﬂ —Jm [rl Vw? — k’%]Ym [rm/w2 — k’%] =0. an

Once we find a root we can choose either one of a or b arbitrarily, and the other one is then determined from
the above conditions.

Note that for a given value of k,, not all modes can propagate inside the coaxial cylinder. We must choose
w? — k2 > 0if we want a propagating mode, otherwise the mode will damp. Note that in the special case in
which we include the axis, i.e. 19 = 0, we must set b = 0 as Y},, blows up at » = 0. Hence, in this case, the
frequency is determined from the roots of

I [riv/w? — k2] = 0. (18)

Once E, is determined and assuming that F, = E; = 0, we can complete the solution by computing the
magnetic field from Eq. (2)). This gives

) 10E,
—iwB, + - 9 0 (19)

) oE,
—iwBg — = 0. (20)

In this solution, the magnetic field is perpendicular to the direction of propagation (Z-direction), and hence
the mode is called transverse magnetic mode.
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3 Transverse Electric Mode

Now consider we have B, = B, = 0 and B, is determined as B, (r)e'™?e?**  with B, (r) computed as a
linear combination of Bessel functions as above. Once we have B, we can calculate the transverse electric
field as

B, — aa% =0 Q1)
0B,

—iwk, =0. 22

why + g 0 (22)

The boundary conditions now imply that E(rg) = E,;(r1) = 0. Hence, as above, we can derive that the
frequencies in this case are the roots of the equation

Jr [rov/w? — k2]Y, [ M] —J[m \/ofk%] Yy [rov/w? — k2] =0 (23)

where primes denote derivatives. Once we find a root, the solution is then completed by selecting either a or
b and using the boundary condition to determine the other. In this solution, the electric field is perpendicular
to the direction of propagation (Z-direction), and hence the mode is called transverse electric mode.
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