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1 Basic Equations
In this document I derive solutions to Maxwell equations in (potentially coaxial) cylindrical waveguides.
The frequency domain Maxwell equations are

−iωE−∇×B = 0 (1)
−iωB+∇×E = 0. (2)

Here we have assumed speed of light is one. Taking the curl of each equation and eliminating we can
separate the equations for the electric and magnetic fields as1

−ω2E+∇×∇×E = 0 (3)

−ω2B+∇×∇×B = 0. (4)

As the free-space electric and magnetic fields are divergence free we can write these equations as

−ω2E−∇2E = 0 (5)

−ω2B−∇2B = 0. (6)

As the equations satisfied by the fields are the same, denote them by F. In cylindrical coordinates (r, φ, z)
we can write them in component form as

ω2Fr +∇2Fr −
2

r2
∂Fφ
∂φ
− Fr
r2

= 0 (7)

ω2Fφ +∇2Fφ +
2

r2
∂Fr
∂φ
− Fφ
r2

= 0 (8)

ω2Fz +∇2Fz = 0, (9)

where the Laplacian acting on a scalar is defined as

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂φ2
+
∂2f

∂z2
= 0. (10)

Let us examine the z component equation first. This can be written as

ω2Fz +
1

r

∂

∂r

(
r
∂Fz
∂r

)
+

1

r2
∂2Fz
∂φ2

+
∂2Fz
∂z2

= 0. (11)

1To easily follow these derivations it is important to have the NRL Plasma Formulary at hand, specially the pages on vector identities.
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We will assume solutions of the form Fz(r, φ, z) = Fz(r)e
imφeiknz , where kn = 2πn/Lz , where Lz is the

length of the cylinder. This leads to an ODE for Fz

r2
d2Fz
dr2

+ r
dFz
dr

+
[
r2(ω2 − k2n)−m2

]
Fz = 0. (12)

The solution to this equation can be written in terms of Bessel functions

Fz(r) = aJm
[
r
√
ω2 − k2n

]
+ bYm

[
r
√
ω2 − k2n

]
(13)

where Jm and Ym are Bessel functions of the first and second kind respectively, and a and b are constants.

2 Transverse Magnetic Mode
Now, consider applying this solution to determine the electric field inside a coaxial cylinder with inner and
outer radii r0 > 0 and r1 > r0. The boundary conditions for tangential electric field give

Ez(r0) = Ez(r1) = 0. (14)

This leads to two equation

Ez(r0) = aJm
[
r0
√
ω2 − k2n

]
+ bYm

[
r0
√
ω2 − k2n

]
= 0 (15)

Ez(r1) = aJm
[
r1
√
ω2 − k2n

]
+ bYm

[
r1
√
ω2 − k2n

]
= 0 (16)

for the three unknowns a, b and ω. For non-trivial solutions this means that the frequency ω must be the
roots of the equation

Jm
[
r0
√
ω2 − k2n

]
Ym
[
r1
√
ω2 − k2n

]
− Jm

[
r1
√
ω2 − k2n

]
Ym
[
r0
√
ω2 − k2n

]
= 0. (17)

Once we find a root we can choose either one of a or b arbitrarily, and the other one is then determined from
the above conditions.

Note that for a given value of kn not all modes can propagate inside the coaxial cylinder. We must choose
ω2− k2n > 0 if we want a propagating mode, otherwise the mode will damp. Note that in the special case in
which we include the axis, i.e. r0 = 0, we must set b = 0 as Ym blows up at r = 0. Hence, in this case, the
frequency is determined from the roots of

Jm
[
r1
√
ω2 − k2n

]
= 0. (18)

Once Ez is determined and assuming that Er = Eφ = 0, we can complete the solution by computing the
magnetic field from Eq. (2). This gives

−iωBr +
1

r

∂Ez
∂φ

= 0 (19)

−iωBφ −
∂Ez
∂r

= 0. (20)

In this solution, the magnetic field is perpendicular to the direction of propagation (Z-direction), and hence
the mode is called transverse magnetic mode.
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3 Transverse Electric Mode
Now consider we have Bφ = Br = 0 and Bz is determined as Bz(r)eimφeiknz , with Bz(r) computed as a
linear combination of Bessel functions as above. Once we have Bz we can calculate the transverse electric
field as

−iωEr −
1

r

∂Bz
∂φ

= 0 (21)

−iωEφ +
∂Bz
∂r

= 0. (22)

The boundary conditions now imply that Eφ(r0) = Eφ(r1) = 0. Hence, as above, we can derive that the
frequencies in this case are the roots of the equation

J ′
m

[
r0
√
ω2 − k2n

]
Y ′
m

[
r1
√
ω2 − k2n

]
− J ′

m

[
r1
√
ω2 − k2n

]
Y ′
m

[
r0
√
ω2 − k2n

]
= 0 (23)

where primes denote derivatives. Once we find a root, the solution is then completed by selecting either a or
b and using the boundary condition to determine the other. In this solution, the electric field is perpendicular
to the direction of propagation (Z-direction), and hence the mode is called transverse electric mode.
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