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1 The multi-species Fokker-Planck operator

The Fokker-Planck operator in a multi-species plasma can be written as (see NRL Plasma Formulary and
the original Rosenbluth, MacDonald and Judd (RMJ) paper[2]1)

∂fs
∂t

= −∇ ·
[
asfs −

1

2
∇ · (Dsfs)

]
(1)

where the ∇ operator is the gradient operator in velocity space. The drag velocity and diffusion tensor are
given by

as = ∇hs (2)

Ds = ∇∇gs (3)

where

hs =
∑
b

Γsb

(
1 +

ms

mb

)
Hb (4)

gs =
∑
b

ΓsbGb. (5)

are scalar potentials. Here

Γab = 4πλab
q2aq

2
b

m2
a

(6)

where λab is the Coulomb logarithm and qa and ma are the charge and mass of the species respectively. The
potentials Hs and Gs are the Rosenbluth potentials and are determined from

Hs(v) =

∫
fs(v

′)

|v − v′|
d3v′, (7)

Gs(v) =

∫
fs(v

′)|v − v′| d3v′. (8)

Using the identity

∇2|v − v′|−1 = −4πδ3(v − v′) (9)

1Historically, the first derivation of the FPO in the case of Coulomb (inverse square law) was by Lev Landau in 1936[1]. Landau,
however, writes the equation in an integral form and does not introduce the potentials as RMJ did. Curiously, the 1957 paper by
RMJ does not mention Landau’s work at all. As is usually the case, the original papers by these Masters of the field remain highly
readable and still provide the best derivations of the equations.
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and as∇2|v| = 2/|v| we can derive alternate expressions for the Rosenbluth potentials as

∇2Hs = −4πfs (10)

∇2Gs = 2Hs. (11)

As is clear from these equations, the FPO is a complicated 3D (in velocity space) nonlinear integro-
differential equation, coupling all species via the Rosenbluth potentials. Its solutions display rich structure,
specially when combined with the particle motion in self-consistent electromagnetic fields. Designing a
general production solver for the case of multi-species FPO poses a formidable challenge.

I should mention that this is not the exact form of the FPO as given in the RMJ paper. There they
assume that all species have the same absolute value of charge |e|, allowing them to write Γa = Γaa. With
this assumption a little algebra shows that the equations listed above are indeed identical to the ones in the
RMJ paper.

We can easily derive the following two relations:

Tr(Ds) = ∇2gs = 2
∑
b

ΓsbHb (12)

and

∇ ·Ds = ∇ · (∇∇gs) = ∇∇2gs = 2
∑
b

Γsb∇Hb. (13)

The latter expression allows us to write the FPO as

∂fs
∂t

= −1

2
∇ ·
[
a′sfs︸︷︷︸
drag

−Ds · ∇fs︸ ︷︷ ︸
diffusion

]
(14)

where
1

2
a′s = as −

∑
b

Γsb∇Hb =
∑
b

Γsb
ms

mb
∇Hb. (15)

Written in the form Eq. (14) the FPO clearly has two competing terms: the first drag term and the second the
diffusion term. For the special case of a single species we have hs = 2ΓsHs and rather elegantly, a′s = as.

1.1 The case of a Maxwellian

The Rosenbluth potentials given by Eq. (7) and Eq. (8) can be explicitly computed for the case of the
Maxwellian

fM (v) =
n

(2πv2th)3/2
e−v

2/2v2th (16)

where n and vth are the number density and thermal-speed respectively. We can show that

HM (v) =
n

v
erf

(
v√
2vth

)
(17)

and

GM (v) =
√

2nvth

[
e−v

2/2v2th
√
π

+ erf

(
v√
2vth

)(
vth√
2v

+
v√
2vth

)]
(18)

where erf(x) is the error function. For a drifting Maxwellian shift the velocity to be centered at the drift
velocity (i.e. replace v → |v − u|).
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2 Conservation properties and constraints

The FPO conserves the particle count, total momentum and total energy. Starting from Eq. (1) we can
derive the constraints to ensure momentum and energy by taking msv and msv

2/2 moments to arrive at the
following constraint ∑

s

∫ ∞
−∞

msasfs d
3v = 0 (19)

for momentum conservation, and∑
s

∫ ∞
−∞

ms

[
v · as +

1

2
Tr(Ds)

]
fs d

3v = 0 (20)

for energy conservation.

Remark 1. These constraints depend only on the form of Eq. (1) and not on the details of how a and D are
computed. Hence, we must show that for the specific case of FPO in which the drag and diffusion terms are
computed from Rosenbluth potentials, they are indeed satisfied.

Remark 2. An approximate model for the drag velocity and diffusion tensor is provided by Lenard-Bernstein
or Dougherty collision operator. In this case the advection velocity and diffusion matrix are computed from
the local drift-velocity and thermal speeds as follows

as = −νss(v − us)−
∑
r 6=s

νsr(v − usr) (21)

Ds = 2νssv
2
th,sI +

∑
r 6=s

2νsrv
2
th,srI (22)

Here νsr is the collision frequency between particles of species s and r, and us and vth,s =
√
Ts/ms are

the mean (drift) velocity and thermal speed of particles of species s respectively, and the quantities with
subscript sr are intermediate quantities that need to be determined (partly) from momentum and energy
conservation, that is choosen to satisfy Eq. (19) and Eq. (20).

3 The single-species Fokker-Planck operator

The Fokker-Planck operator in a single-species plasma can be written as

1

Γ

∂f

∂t
= −∇ ·

[
af − 1

2
∇ · (Df)

]
(23)

where the∇ operator is the gradient operator in velocity space and Γ = 4πe4λ/m2 where λ is the Coulomb
logarithm. The drag velocity and diffusion tensor are given by

a = ∇h (24)

D = ∇∇g (25)

where the potentials h and g are the Rosenbluth potentials and are determined from

h(v) = 2

∫
f(v′)

|v − v′|
d3v′, (26)

g(v) =

∫
f(v′)|v − v′| d3v′. (27)
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Alternatively,

∇2h = −8πf (28)

∇2g = h. (29)

We can easily derive the following two relations:

Tr(D) = ∇2g = h (30)

and

∇ ·D = ∇ · (∇∇g) = ∇∇2g = a. (31)

The latter expression allows us to write the FPO as

1

Γ

∂f

∂t
= −1

2
∇ ·
[
af︸︷︷︸
drag

−D · ∇f︸ ︷︷ ︸
diffusion

]
(32)

Below I present finite-volume schemes to solve the FPO written as Eq. (23) called Form I and written as
Eq. (32), called Form II.

4 Solving the Poisson equations

To discretize the Poisson equations that determine the Rosenbluth potentials we use a central scheme to
write

m∑
d=1

Vd
∆v2d

(∆p − 2I + ∆m)h = −8πf (33)

and
m∑
d=1

Vd
∆v2d

(∆p − 2I + ∆m)g = h. (34)

Here I am using the symbol Vd, d = 1, . . . , 3 to represent the directional modifer operators in velocity space.

5 A finite-volume scheme for Form II

We will first construct a finite-volume scheme for Form II Eq. (32). For this we will construct a scheme in
which the Rosenbluth potentials are directly used in the update stencil, without explicit computation of a
and D (though these need to be computed at the appropriate interfaces). Start by writing

∂f

∂t
= −1

2

∂

∂v1

(
a1f −D11

∂f

∂v1
−D12

∂f

∂v2
−D12

∂f

∂v3

)
︸ ︷︷ ︸

G

+ . . . (35)

where G is the flux. We will discretize this using a finite-volume scheme as

∂f

∂t
= −1

2

Gi+1/2 −Gi−1/2

∆v1
+ . . . (36)
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where Gi±1/2 are the numerical fluxes which we need to determine. We will do this in steps. Note that in
the following we are assuming we have cell-average values of f , h and g in each cell.

Advective Flux. First, let us deal with the advection term (the edge index is now dropped)

a1f =
(dp − dm)h

∆v1
f̂ (37)

where we have used central difference to compute a1 = ∂h/∂v1 and f̂ is the distribution function evaluated
at the cell edge. Several approximations can be used to compute f̂ , for example upwind value (f̂ = dmf if
a1 > 0 or f̂ = dpf if if a1 < 0) or plain averages. For example, if we use averages then we would write the
advection flux as

a1f =
(dp − dm)h

∆v1

(dp + dm)f

2
. (38)

A third-order recovery based upwind value is described later in this document.

Diagonal diffusive flux. Next consider the diffusive term with the diagonal diffusion coefficient D11. As
there is no preferred direction for diffusion we can use central differences for computing gradient of f and
hence write

D11
∂f

∂v1
= D11

(dp − dm)f

∆v1
(39)

where now D11 is the diffusion coefficient on the cell face and must be computed from ∂2g/∂v21 evaluated
at the interface. To do this recover a polynomial across four cells (two to the left and two to the right) by
matching cell averages in those cells and evaluate its second derivative at the interface. This leads to the
expression

D11 =
∂2g

∂v21
=

(d2p − dp − dm + d2m)g

2∆v21
. (40)

Note to compute D11 we have to use a four-point stencil in X .

Transverse diffusive fluxes. Finally consider the transverse diffusive fluxes. To discretize this we need
to deal with two types of terms: first, the derivative of f in transverse direction and the cross-diffusion
coefficient at the interface, which itself is a cross-derivative of g. For both of these we will use central
differences to get

D12
∂f

∂v2
+D13

∂f

∂v3
= D12

(T 1
p − T 1

m)

2∆v2

(dp + dm)

2
f +D13

(T 2
p − T 2

m)

2∆v3

(dp + dm)

2
f (41)

and

D12 =
∂

∂v1

∂g

∂v2
=

(dp − dm)

∆v1

(T 1
p − T 1

m)

2∆v2
g (42)

and

D13 =
∂

∂v1

∂g

∂v3
=

(dp − dm)

∆v1

(T 2
p − T 2

m)

2∆v3
g (43)

This completes the scheme as the same formulas can be used for the flux in Y and Z directions by inserting
the appropriate modifier operators at various places.
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6 Computing interface value f̂

The first thing to notice is that the stencil for the FPO in 3D is rather complicated. In each direction to update
cell we need a 5-point 1D stencil (to compute D11 at each interface we need 4 cells, two to the right and two
to the left) and we also need a 2 × 3-point stencil (dp, dm, dpTp, dpTm, dmTp, dmTm) for each transverse
direction to compute the cross-derivative terms at each face. Hence, we need 33 − 8 cells (i.e. the corners
of the 3D cube (T 1

p T
2
p etc) do not appear in the stencil) and need to add a cell on each face of the 3D cube

to enable computing D11, leading to a 33 − 8 + 6 = 25 point stencil.
As we already need cells (d2m, dm, dp, d2p) to compute D11 at an interface we can use these to also

compute f̂ needed in the advective flux. We have two choices here: first we can use all four cells to compute
a high-order non-dissipative value (which however may have overshoots when there are sharp gradients) or
use an upwind biased recovery, i.e. use (d2m, dm, dp) if a1 > 0 or (dm, dp, d2p) if a1 < 0. Fitting the
appropriate polynomials to the known cell averages we get expressions

f̂ =
1

12
(−d2p + 7dp + 7dm − d2m)f (44)

for the non-dissipative interface value, and

f̂ =
1

6
(2dp + 5dm − d2m)f if a1 > 0 (45)

or

f̂ =
1

6
(−d2p + 5dp + 2dm)f if a1 < 0 (46)

when using upwinding. Further limiting may be required to ensure monotonicity.
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