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1 The Momentum Equation

Start from the fluid momentum equation

dus

dt
+

1

msns
∇ ·Ps =

qs
ms

(E + us ×B), (1)

where

d

dt
≡ ∂

∂t
+ us · ∇ (2)

and all other symbols have their usual meaning. Note this equation is exact, i.e. this is the exact first moment,
〈vfs〉, of the Vlasov equation.

Now, consider a magnetized plasma, and split the pressure tensor as

Ps = PC
s + Πs (3)

where

PC
s = (I− bb)ps,⊥ + bbps,‖ = Ips,⊥ + bb(ps,‖ − ps,⊥) (4)

is the CGL pressure tensor, b = B/B is the direction of the magnetic field, and Πs is the agyrotropic part
of the pressure tensor. Note that Tr (PC

s ) = 2ps,⊥ + ps,‖ = 3ps, where ps is the scalar pressure. This also
shows that Tr (Πs) = 0.

The divergence of the CGL pressure tensor is

∇ ·PC
s = ∇ps,⊥ + (ps,‖ − ps,⊥) ∇ · (bb)︸ ︷︷ ︸

(∇·b)b+∇‖b

+b∇‖(ps,‖ − ps,⊥) (5)

where∇‖ ≡ b · ∇.

1.1 Parallel component: the mirror force

Now consider the parallel component of∇ ·PC
s :

b · (∇ ·PC
s ) = ∇‖ps,⊥ + (ps,‖ − ps,⊥)

(
∇ · b + b · (∇‖b)

)
+∇‖(ps,‖ − ps,⊥) (6)

Now b · (∇‖b) = ∇‖(b · b)/2 = 0. Also

∇ · b = ∇ · B
B

=
1

B
∇ ·B + B · ∇ 1

B
= − 1

B
∇‖B. (7)
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Putting everything together we finally get the parallel momentum equation

b · dus

dt
=

qs
ms

E‖ −
1

nsms
∇‖ps,‖ +

(ps,‖ − ps,⊥)
nsmsB

∇‖B + b · (∇ ·Πs) . (8)

Now, from single-particle orbit theory we can show the mirror force for a single particle is −µs∇‖B,
where µs is the magnetic moment. Hence, integrating over the particle distribution function we get the net
mirror force is

−∇‖B
∫ ∞
−∞

msv
2
⊥

2B
fs d

2v = −
ps,⊥
B
∇‖B. (9)

Hence, in the parallel momentum equation, only the term with ps,⊥ is due to the mirror force.
For isotropic pressure tensor (ps,‖ = ps,⊥ = ps) the parallel momentum reduces to

b · dus

dt
=

qs
ms

E‖ −
1

nsms
∇‖ps. (10)

It may appear that the mirror force has vanished. However, that is not the case. When the pressure tensor is
isotropic, the mirror force exactly balances the pressure gradient from the change in area of a flux tube.

1.2 Perpendicular component: drifts across magnetic field

The general procedure to derive drifts is to look at the motion of the plasma perpendicular to the magnetic
field. To do this, take the cross product of the momentum equation with B to get

dus

dt
×B +

1

msns
∇ ·Ps ×B =

qs
ms

E×B +
qs
ms

(us ×B)×B︸ ︷︷ ︸
(B·us)B−B2us

(11)

Rearranging, the perpendicular component of the fluid velocity is

us⊥ =
E×B

B2
− ∇ ·Ps ×B

qsnsB2
− ms

qsB2

dus

dt
×B. (12)

we can calculate the contribution of the CGL pressure tensor to the diamagnetic drifts as

−∇ ·P
C
s ×B

qsnsB2
= −
∇ps,⊥ ×B

qsnsB2
+ (ps,⊥ − ps,‖)

∇‖b×B

qsnsB2
(13)

Putting everything together we get

us⊥ =
E×B

B2
−
∇ps,⊥ ×B

qsnsB2
+ (ps,⊥ − ps,‖)

∇‖b×B

qsnsB2
− ∇ ·Πs ×B

qsnsB2
− ms

qsB2

dus

dt
×B. (14)

Now, define a magnetization vector for each species as∇×Ms where

Ms = −b

∫ ∞
−∞

msv
2
⊥

2B
fs dv

3 = −ps,⊥
B

B2
(15)

Hence, we have

∇×Ms = ∇×
(
−ps,⊥

B

B2

)
= −
∇ps,⊥ ×B

B2
− ps,⊥∇×

(
b

B

)
. (16)
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Substituting in Eq. (14) we finally get

us⊥ =
E×B

B2
+
∇× (−ps,⊥b/B)

qsns
+
ps,⊥∇× (b/B)⊥

qsns
+ (ps,⊥ − ps,‖)

∇‖b×B

qsnsB2
− ∇ ·Πs ×B

qsnsB2
− ms

qsB2

dus

dt
×B.

(17)

The first term is the E × B drift, the second term, the diamagnetic drift, the third and fourth terms the
gradient and curvature drifts, while the last term contain the polarization drifts.

In a typical mirror geometry the drifts are small compared to the parallel momentum terms. However,
in the spinning mirror, of course, the E×B velocity needs to be accounted for as it provides the rotation to
the plasma. Also, the drift terms can lead to instabilities.

2 A Gyrokinetic Viewpoint

In a simplified model that follows a field-line, the gyrokinetic equation can be written in the form

∂

∂t
(Bfs) +B

∂

∂z

(
1

B
żBfs

)
+

∂

∂v‖
(v̇‖Bfs) = 0 (18)

where fs(z, v‖, µ) is the distribution function of the gyrocenters, z is the length along the field-line. The
factor of 1/B comes about from the Jacobian of the transform to field-line following coordinates. The
characteristic velocities are given by

ż = v‖ (19)

v̇‖ = −
1

ms

(
µ
∂B

∂z
+ qs

∂φ

∂z

)
(20)

Note that the mirror force explicitly appears in the parallel acceleration. We can take the velocity moment
of this equation to derive the gyrokinetic parallel momentum equation. To do this, the moments need to be
computed carefully: the volume-element in phase-space is

d3v = B dw = B 2πm−1s dv‖dµ (21)

and the limits of integration v‖ ∈ [−∞,∞] and µ ∈ [0,∞]. (Note that the volume-element definition comes
about from the definition of the magnetic moment). For example, the moments we will use below are defined
as

ns =

∫
fsB dw (22)

nsus,‖ =

∫
v‖fsB dw (23)

ps,‖ = ms

∫
(v‖ − us,‖)2fsB dw (24)

ps,⊥ = B

∫
µfsB dw (25)

qs,‖ = m

∫
(v‖ − us,‖)3fsB dw (26)

qs,⊥ = B

∫
(v‖ − us,‖)µBf dw. (27)
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First, we can derive the number density equation by integrating the gyrokinetic equation over all velocity
space to get

∂ns
∂t

+B
∂

∂z

(nsus,‖
B

)
= 0. (28)

Next, take the msv‖ moment of the GK equation to get

∂

∂t
(msnsus,‖) +B

∂

∂z

[
1

B
(ps,‖ +msnsu

2
s,‖)

]
= −

ps,⊥
B

∂B

∂z
− qsns

ms

∂φ

∂z
. (29)

Rearrange to get

∂

∂t
(msnsus,‖) +B

∂

∂z

(msnsu
2
s,‖

B

)
= −qsns

∂φ

∂z
−
∂ps,‖

∂z
+

(ps,‖ − ps,⊥)
B

∂B

∂z
. (30)

Using the continuity equation in this we can finally write

∂us,‖

∂t
+ us,‖

∂us,‖

∂z
= − qs

ms

∂φ

∂z
− 1

msns

∂ps,‖

∂z
+

(ps,‖ − ps,⊥)
msnsB

∂B

∂z
. (31)

The right-hand size of this expression is identical to Eq. (8), except for the agyrotropic terms are missing,
consistent with the gyrokinetic approximation.

Instead of equations for pressure evolution, we will derive equations for particle energy for each species,
Es:

Es ≡
∫ (

1

2
msv

2
‖ + µB

)
fsB dw =

1

2
msu

2
s,‖ +

ps,‖ + 2ps,⊥

2︸ ︷︷ ︸
3ps/2

(32)

where ps is the scalar pressure. This leads to

∂Es
∂t

+B
∂

∂z

[
(Es + ps,‖)us,‖

B

]
+B

∂

∂z

[
qs,‖/2 + qs,⊥

B

]
= −

qs,⊥ + us,‖ps,⊥

B

∂B

∂z
− qsnsus,‖

∂φ

∂z
. (33)

The second term above is the advective energy flux, the third the energy flux due to non-ideal (heat-flux)
effects and the RHS terms represent the energy exchange with other species and the field. We still need one
more equation to determine ps,⊥ (say) which we can derive by taking the µB moment to get

∂ps,⊥
∂t

+B
∂

∂z

(
qs,⊥ + us,‖ps,⊥

B

)
= 0. (34)

Hence, the final set of equations we need to solve are the continuity equation Eq. (28), the momentum density
equation Eq. (29), the particle energy equation Eq. (33) and the equation for perpendicular pressure Eq. (34).
Of course, we still need a closure term to determine the parallel and perpendicular heat-fluxes. We may also
need to add some collisions to account for pitch-angle scattering and inter-species energy equilibration.
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