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Fokker-Planck Equation for an Inverse-Square Force*
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The contribution to the Fokker-Planck equation for the distribution function for gases, due to particle-
particle interactions in which the fundamental two-body force obeys an inverse square law, is investigated.
The coefiicients in the equation, (Av) (the average change in velocity in a short time) and (avttv), are
obtained in terms of two fundamental integrals which are dependent on the distribution function itself.
The transformation of the equation to. polar coordinates in a case of axial symmetry is carried out. By
expanding the distribution function in Legendre functions of the angle, the equation is cast into the form
of an in6nite set of one-dimensional coupled nonlinear integro-differential equations. If the distribution
function is approximated by a Qnite series, the resultant Fokker-Planck equations may be treated numeri-
cally using a computing machine. Keeping only one or two terms in the series corresponds to the approxima-
tions of Chandrasekhar, and Cohen, Spitzer and McRoutly, respectively.

I. INTRODUCTION

''N dealing with the nonequilibrium properties of
- - systems whose particles obey an inverse-square law

of interaction, it is convenient to make use of the fact
that under most circumstances small-angle collisions
are much more important than collisions resulting in
large momentum changes. ' This leads to the method
often used for treating such systems, in which one
expands the collision integrand of the Boltzmann
equation in powers of the momentum change per
collision.

A more generally valid approach to the problem of
treating changes in a distribution function resulting
from frequently occurring "events, " each of which
produces a small change in the momentum of a particle,
is to use the Fokker-Planck equation, which has been
discussed by Chandrasekhar. 2 He has used the for-
malism of this equation to evaluate the collision terms
of the Boltzmann equation under the assumptions that
(a) the events producing changes in particle momenta
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are two-body interactions described by the associated
differential scattering cross sections, and (h) that the
distribution function is isotropic in space and velocity
space. Spitzer and collaborators'' have extended this
calculation to the case in which the distribution function
is of the form f&"+tsf&",where f"& and f&" are isotropic
and p, is the direction cosine between the particle tra-
jectory and some preferred direction in space, and f"'
is assumed to be small.

It is the purpose of this paper to present the me-
~ chanics of two-body collisions in a somewhat simplified

form, and to derive the Fokker-Planck equation for an
arbitrary distribution function. From this general
equation such special cases as those of Chandrasekhar
and Spitzer may easily be obtained. For more complex
situations the equation is suitable for integration by an
electronic computer.

II. FORMULATION OF THE PROBLEM

The Boltzmann equation for the change of the
molecular distribution function is given by

Bf. Bf. ~" Bf. (Bf.i
+&" +— =

I I, (&)
Bt et'" ttt ctv" E itt ),

' Cohen, Spitzer, and McRoutly, Phys. Rev. 80, 230 (1950).A
more complete list of references is given in this paper.

s L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).
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where f, is the number of molecules of type u per unit
volume in the phase space of configuration and velocity,
and F is an external force Geld. The summation on
repeated Greek indices is understood in this paper,
while sums on Roman letters denoting molecular species
are explicitly indicated. The quantity (Bf,/Bt), repre-
sents the change in the distribution function produced
by collisions, and it is this term with which we are
concerned. Since the interactions take place -between
molecules within the same small region in space, we
need only consider the velocity dependence of the dis-
tribution function in evaluating this term.

The Fokker-Planck equation, which is simply a con-
servation equation, gives the time rate of change of f
due to collisions as

(Bf ) 8 1 8'
(f.(» ).)+- (f.(»» ).), (2)

~ 8t ), Bv" 2 Bv"Bv"

force,
o (Q) = (e'/4m, t,2u4) Lsin(8/2) j~, (5)

where m, t,——m,mq/(m, +mq) is the reduced mass of the
colliding particles and 8 is the scattering angle in the
center-of-mass system.

IIL DERIVATION OF THE EQUATION

We first discuss the kinematics of the collision
between a molecule of type c and belocity v and a
molecule of type b and velocity v'. The relation between
v„ the velocity V of the center of mass, and the relative
velocity II= v—v' is

v.=V+ u.
m, +my

The change in the p, th component of v, is given by

(»&) =Q dv'fg(v'I) t dQo(u, Q)uhvt', .(3)

where u is the magnitude of the relative velocity
~

v'&—vt' ~, o.(u) is the differential scattering cross section,
0 is the scattering solid angle, and h~& is the change in
e'& resulting from the collision. The increment Bet" has
been integrated over all scattering angles, all velocities
~& of the scattering particle, and has been summed over
all the species of particles. Similarly the average value
(Av'»"), is given by

where ~& is the component of particle velocity in Car-
tesian coordinates and (»&), is the average increment
per unit time of the pth component of velocity of a
molecule of type u. The derivation of this equation
rests on the approximation that small changes in e& are
the most probable and that terms involving higher
powers of Av& contribute negligibly to (8f,/8t) ..' In the
next section we give a more precise statement of the
approximation made here.

In calculating the average values (»&) and (»&Av"),
we make the usual assumption that changes in velocity
v& result from two-particle interactions, or collisions
during which spatial correlation effects (polarization
effects or multiple collisions) are unimportant. For
many situations this assumption is believed to be
justified, as is indicated by the work of Chapman,
Ferraro, and Persico, ' and more recently, Gasiorowicz,
Neuman, and Riddell. ' The expression for (Av"),
becomes

We And it convenient to introduce a local Cartesian
coordinate system with unit vectors e&', e2', e3' whose
relation to the fixed system e&, e2, e3 is given by

e3XuU
Cy= — C2= e3'= eg'Xe2', (7)

P(u')'+ (u')'j'

and in which the relative velocity has components Nl.&.

The changes in the components of NL,& produced by a
collision are easily calculated in the local Cartesian
coordinates, since the relative velocity vector. simply
undergoes a rotation through an angle 0,

Auq'= —2u sin'(8/2),

Aul~ ——2u sin(8/2) cos(8/2) cosg,

Aul. '——2u sin(8/2) cos(8/2) sing.

A diagram of the scattering is shown in Fig. 1. The
changes in the components of the relative velocity u in
the fixed coordinate system are related to these changes
in the local system by

Au& = (e„e„')Au J.",

Au Au"= (e„e.') (e, e„')Aul. Aul, "

We can next calculate the change of relative velocity
in the local system for all collisions by integrating over
the scattering angles 8, p, which will be denoted as
follows:

f
(»&Av"),=P dv'fq(v'&) dQo (u)tv"Av". (4)

s J J {Au&~)—= dQ~u(hu&~). (10)

The differential scattering cross section that we use in
Eqs. (3) and (4) is that for an inverse-square law of

'Gasiorowicz, Neuman, and Riddell, Phys. Rev. 101, 922
(1956).

Using Eqs. (5) and (8), we have

t' v.e' ) ~ sin2(8/2) sin8
{Au&') = —

~ I d8, (11)
&nz, q'u'~ ~ sin'(8/2)
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where we have performed the integration over P. The
integral diverges logarithmically at small angles, an(I
we therefore introduce a cutoG at 8;, to obtain

{AuL'}~—(4v.e /m, g u') ln(2/a ~). (12)

The small-angle deflections correspond to scatterings
with very large impact parameters, and the divergence
arises from the long-range nature of the Coulomb forces.
The divergence is eliminated, however, when we take
into account the shielding that arises from the polariza-
tion of charge surrounding the scatterer. s The polari-
zation screens the scattering particle and provides a
natural cuto6 on the maximum impact parameter of
the order of a Debye length Xn=(hT/4v. ue')&, and a
value for the logarithm in Eq. (12) of

1n(2/8 ) =lnD=ln( —2m, ~u') (e'/Xn) ',

),g) = (hT/4v ue'Z, H)
'*.

gU = 2U SIA2

Fro. i. Diagram showing kinematics of an elastic scatter
in the local Cartesian system.

u= L(v~ —v'~) (vt' v'~))*, s—o that we have

fÃg 8 1 a'(u)
{Av }=I' ' — {A"Av }=r.

m q Be~I av'av" (16)

(Av~).=g !dv'f(v'){Av~}. =l'.(Bh./av~), (17)

(18)

(19)

It is interesting to note a formal similarity with poten-

(13) tial theory,{huL'} ={huL'} =0,

{(AuL')'} =0,

{(+uL2)2}—{(AuL3)2} (4v.v4/yg ~2u2) lnD

ns, +my
V 'h —= (a'/avt'avt')h, = —4v. Q fq(v),

my

and

(14)
V' 'g = (a'/av av"av av")g =—8v- P g fg (20)

In this equation kT is proportional to the average
kinetic energy, e is the number of particles per unit
volume, and e is the electronic charge. The quantity D,
which is the ratio of the Debye length )D to the clas- I', —= (4v e' lnD/mo') .
sical distance of closest approach (-',mu'/e') for two
particles of relative velocity u, in most cases of interest
will be a very large number so that lnD))1. From Eqs.
(3), (5), and (8) one can easily see that terms of higher
order in Av', like (Av&hv"Av"), will not contain lnD, and
that the neglect of these terms in the Fokker-Planck
equation is therefore justified. The insensitivity of lnD where
to the precise value of Imeans that we can simplify our
further development by neglecting the weak dependence h. (v) =P l dv'f~(v')! v —v'! -',
on I and using the value for a Maxwell-Boltzmann ms

distribution of ~mN' —~AT. It would probably not be
justi6ed in any event to consider the argument of the g(v)=P dv'fg(v')! v —v'!.
logarithm as better determined than this. s J

The remaining integrations yield

with all other second-order terms zero (compared to
lnD).

Using these results with Eqs. (6), (7), and (9), we
can immediately write down the integrals in the 6xed
coordinate system,

{Av"} = —!4 e4(lvD)/nm, qm, ) u", u
(15)

{hv hv"},= L4v.e'(lnD)/ns '){a "—~u"/( )'}

These equations can be simplified by noting that

6 The choice of a cutoff is discussed at length in reference 3.

Substituting Eq. (18) into Eq. (2), we obtain the
Fokker-Planck equation for an arbitrary distribution
function:

1 (af, ) a ( ah, ) 1 a~ ( B2g

.! f. . I+- . .I f. ! (»)I'. ( a~ ), av' E av'i 2 av'av~ E av'av~i

In the general case this fourth-order, three-dimensional,
time-dependent, and nonlinear partial diGerential
equation seems quite dificult to handle. In many cases,
however, there are simplifications which result when a
coordinate system is adopted that embodies the natural
symmetries of a problem. For example, in many
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problems there will be a preferred direction in space,
such as the direction of an external applied field, with
azimuthal symmetry about this direction. Polar coor-
dinates seem especially suitable for such a problem.

where the commas indicate covariant derivatives with
respect to the q&. In any Cartesian coordinate system
Eq. (22) has precisely the form of Eq. (2). We can now
write Eq. (18) in a covariant form,

TJ'= a4'"(h,), „, S""=al'"a"'(g, „,) (23)

The two covariant derivatives that appear in Eq. (23)
can be found from

(h ) Bh /Bq, g B2g/Bq Bq, 1, (Bg/Bq'), (24)

IV. TRANSFORMATION OF THE EQUATION

Although it is possible to transform Eq. (21) by a
straightforward change of variables, the procedure is
tedious and unnecessarily involved. A much simpler and
more direct procedure is to write the equation in a
covariant form valid in any set of curvilinear coor-
dinates q', q', and q'. Let the expression for distance
between two points whose coordinates di8er by dq',
dq' and dq'be

(ds)'= a„„dq~dq"

where a„„ is a metric tensor, and let a&'deta be the
cofactor of a„„ in the matrix a= (g„„), i.e., g&"a„„=B„&.
We observe that the quantities T,&=I', '{Ae,l") and
S,&"=I', '{Ae&Ae"), transform like a contravariant
vector and tensor, respectively, between di6erent Car-
tesian coordinate systems. The appropriate tensor
extension of Eq. (2) is therefore

I'. '(Bf-/Bt). = (fT."),.—+'(fS."")."-(22)

As an example we can easily write down the equation
in spherical polar coordinates in velocity space, assuming
azimuthal symmetry about the 0=0 symmetry axis, so
that we have f(e,y), where p, = cosB. In these coordinates
we have

q='v, q=y, q=$,
ds'= de'+e'(1 y'—) '(dy)'+v'(1 '—)(d0)'
811=1)

a"= 1)

a22 ——e'(1—y') —', a22 ——e'(1—y'),
a;;=0 if iW j, (28)

g22 e—2(1 y2) a22 e—2(1 2)—1

a'~=0 if i&j,

The second-rank tensor 5&" follows in the same way:

Sll B2g/Be2

S22 e—4(1 y2)2[B2g/By2+e(1 y2)
—1(Bg/Be)

y(1 y') '—Bg/By—7 (30)/13 —/23 —0)

S"=e-'(1—y') [B'g/BeBp, —e 'Bg/By7-
S'2= e '(1—y') —'-[vBg/Be —yBg/By7.

Using Eq. (26) we calculate the second covariant
derivative of (fS""),„„and can then write down Eq.
(22) as

a=det(a„„)= e4.

From Eqs. (23), (24), and (26) we obtain

T '= (Bh./Be) T.'= v-'(1 —y2) (Bh/Bp), T.'= 0,

(fT.&),„=e '(B/-Bv)(fe'Bh, /Be) (29)

+v 2(B/By)Lf(1 y')Bh. /—B) 7.

where

defined by

=a"'[os,r7 = 2a"'(Ba„,/Bq&

The covariant derivative (fT,&) „can be simply ex-
pressed

(fT,"),„=a &(B/Bq~)(a'*fT "), a=det(a„.), (26)

and for (fS&"),„„,

(fS""),"=a '(B'/Bq"Bq") (a'fS"")

I", 'B, Bt,
is a ChristoGel symbol of the second kind

e'(B/—Bv) (f,e'Bh, /Bv) v'(B/B—y)

x Lf.(1—y') Bh./Bp7+ (»') '(B'/»')

X (f.e'B'g/»')+ (»') '(B'/By') {f.[v '(1—y')'

X (B'g/By')+e '(1—y') (Bg/Be) —e 'y(1 —
p, ')

Ba B "—Ba B 25
X(Bg/By)7)+v '(B'/By»)(f. (1 y')—
XL(B'glBy») v'(Bg/B p) 7)+—(»') '(Bl»)
x &f.[ e'(1 y') (B'gl—By') —2(Bgl»)—
+2 e '(Bg/By)7)+(»') '(B!By)

X(f.[ '(1 y') (B'g/B-')+2—y '(Bg/B )-
+2e '(1 p') (B'g/By—Bv,) 2v '(Bg/B—y7) (31).

+a-&(B/Bq") a&

GO@

fS&" . (27)

The writing of Eq. (22) in arbitrary curvilinear coor-
dinates now becomes a straightforward application of
Kqs. (23), (24), (26), and (2'I), in that order.

The equation that describes a system of particles
interacting according to an inverse-square law of force
when there exists an axis of symmetry is now obtained

by combining Eqs. (1), (19), and (31).The quantities
h and g can be given in terms of two-dimensionaL
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integrals,

sss, +siss
h. (v,p) =

J

g(v,p) =Q dv'v" dp'fs(v', p') Q(v', p'; v,l),
5 J

with A and 0 dined in terms of the complete elliptic
integrals E and E as follows:

writing

k (v —v')=k v—kv'Lp"p'+(1 —p,")l(1—p"')& cosP],

where p"=cos(k,e,), p'=cos(v', e,), and P is the angle
between the plane of v' and e, and the plane of k and
e„we have

e '"' P (p')dp, dp'= 2v e ' ' o "
4

X~o(»'E(1—p'") (1—p")1')'P-( ')dp' (3&)

A =4P~+v"—»v'(pp' —5(1—p') (1—p")3')j '

( t
4»'L(1 —p') (1—p")3'

XEi
v'+v's —2vv'L(1 —ps) (1 —p")jt

Q=4Lv'+v" —2vv'(pp' —
t (I—p') (1—p"))&)jt

Using a formula given by Watsonr (12.14) we can
finally integrate this to

e '" "—P„(p')dp'@'= 2v (2sr/kv') &( i)"—
(33)

XP (p")~~,(kv') (38)
1

x~]
& v'+v" —2vv'( p' —L(1—p')(1 —p")j'~ &

4»'L(1 —p') (1—p")3'*

V. REDUCTION OF THE FOKKER-PLANCK
EQUATION FOR AXIAL SYMMETRY

The solution to Eq. (31) can be expanded in a series
of Legendre polynomials:

The spatially homogeneous two-dimensional time-
dependent Eq. (31) is not too complex for electronic
digital computers. Moreover, Eq. (31) forms a useful
starting point for developing an approximate distri-
bution function when axial symmetry exists. A method
for reducing the Eq. (31) to a coupled set of one-dimen-
sional nonlinear integrodi8erential equations which can
be treated quite simply numerically will be given.

XJ +, (kv')k '(vv') —
&. (39)

The integral over k is found in Watsonr (13.42) also:

4p
dk J~;(kv) J„+;(kv')k—'= (2ss+I) '(v(/v)) "+l,

where v& is the smaller of v, v', and v& is the greater.
Thus the final result is

If we write k v= kv(pp"+((1 —p,') (1—p, "')$& cosy},
where p=cos(v, e.) and p is the angle between the
plane of (k,e,) and (v,e,), we can employ the same
formula to integrate Eq. (36) with respect to k, ob-
taining

A„&'&(v,p) =4~ dvY'a„&'(v') dk&~+I(kv)
4p Jp

f.(»p) =Z a "(v)P-(p).
nm

&, w (v~) a+2

a„&'&(v,p) =4sr(2rs+1) ', I dv' a„& &(v')
(34) j vn+1

t4

+ dv' a & '(v') . (40)
J (vI) n—1

This expansion provides an expansion of the two func-
tions h, (v,p) and g(v,p), which can be obtained from

The ex ansion for h (v ) follows'from Eqs (19) and
the definition of h, (v,p). Let us define

P (p)A "(v,p)=— dv'a-"(")P-(p') lv —v'I ' (35)
h, (v,p) =g P (res.+siss) srs,

—'a„&'i (v,p)P (p). (41)

Then, inserting

)v—v'( ' —(27r') ' dke"&v v'&k '

into Eq. (35), we have

P„(p)A„& &(v,p,)

= (2srs)
—' ~dv'a &'&(v'), dke'". &' "&k-'P„(p'). (36)

J

The expansion for g(v,p) can be found in the same way

by first using

~
v —v'~ = —sr

—' dke'" &
—'&k-4.

If we dedne

P„(p)B„&'(v)=— t dv'a„& &(v') dke'~ &' "&P (p')k~,
J

(42)
r G. N. Watson, Theory of Bessel Fgrsegjorss (Cambridge Uni-

versity Press, London, 1944), second edition.
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the same steps followed above give The procedure for obtaining an approximate solution
to Eq. (31) is to retain terms in f,(v,p) to some order X,

8 i'(v) =2v. dv'(v')sa„t &(v')) dkJ~*, (kv)
0 0 f.(v, i )=& a-"(v)~-( ) (4&)

XJ~;(kv')k —'(vv') '. (43)

The k integral can be evaluated in terms of the hyper-
geometric function sFt(a, b; c; s) (reference /, Sec.
13.4):

dkJ„+i(kv) J„+., (kv')k '=a(v&) "+'*(v))" i(e' —s) '
0

Xs~r(~ —s, —1;~+s; v&'/v&') (44)

Bwt i(v) = —4v-(4e' —1)—'

~ s (v&) n+s ( rs
r (v&s) )

X dv'a & &(v')
i

1—
rs+s

+ dv'a„& &(v') -i 1—
i

. (45)
( ')"—' & rs+s (v')')

The expansion for g(v,p) follows from Eqs. (19) and (42):

g(v,~)=Z Z &-"'(v)~ 4). (46)

The hypergeometric function appearing here is actually
a polynomial, and the result for B„t &(v) is

and obtain the corresponding expansions of h, (v,p)
and g, (v,p), which also are to order Jt'(. These expressions
are now inserted in Eq. (31) and the result expressed
as a series in Legendre polynomials. Of use for this
purpose is

Pv(p, )&r(p) =g L ivy's(u),
k=0

where the C~~ I, are given in Condon and Shortley. s

Assuming spatial homogeneity, we find that the velocity-
dependent term v„(Bf,/Bv„) of the Boltzmann differ-
ential operator Eq. (1) can also be expanded in Legendre
polynomials. Equating coeKcients of Legendre poly-
nomials of the same order in the expansions of Eqs. (1)
and (31), one now obtains a system of coupled one-
dimensional nonlinear integro-diGerential equations.

The two simplest approximations are the following

(a) f, (v,p) in k, (v, a) and g(v,p) is isotropic and Eq. (31)
is the equation given by Chandrasekhar; (b) f, (v,p)
= as(v)+a&(v)Pt(y), and Eq. (31) is the equation used

by Spitzer and collaborators. ' '
This work was begun while the erst two authors were

at the University of California Radiation Laboratory.
8 E. U. Condon and G. H. Shortley, T'heory of Atonic SPectru

(Cambridge University Press, London, 1935), Sec. 967.


