
24. THE TRANSPORT EQUATION IN THE CASE 
OF COULOMB INTERACTIONS 

A transport equation is derived for a system consisting of charged particles 
taking their interactions into account. The order of magnitude of the mean free path 
of the particles in such a system is determined. The rate at which the tempera-
tures of the ions and electrons in the plasma become equal is evaluated. 

I N the case of Coulomb interactions there appear, in the formulae for the 
kinetic theory of gases, integrals which are divergent when the distances be-
tween the particles are large. This means tha t an important role is played by 
those collisions in which the distances between the collicjing particles are large. 
But a t large distances the particles are only scattered through small angles 
with small changes in velocity. Thus collisions in which the velocity vector 
is only slightly changed are important. 

Let n (pi) be the distribution function in momentum space. I t is a function 
of the three components of the momentum of the particle (i = x, y, z). The 
change in the momentum during a collision we shall denote by A{ where A{ <ξ ρ{ 

in all the collisions. Further, let d W be the probability (per unit time) of a 
collision between particles with momentum p{ and a particle with momen-
tum p'i, such tha t pi is changed to p{ + A{ and pi to pi + A[. Because of 
momentum conservation A{ = — A\. We shall not, however, use this fact for 
the moment, in order that we may obtain formulae which are valid in the 
general case. The number of such collisions will then be 

dW n(p) n' (ρ') 

(for simplicity we shall omit the indices on p{ and Ai in n(pi) and so on). 
The number of collisions changing particle momenta p{ + A{ and pi -f A\ 

back to pi and pi will equal 
dW n(p + Δ)η{ρ' + Δ'), 

since according to the Liouville theorem the probabilities of forward and reverse 
transitions are equal. 

Let us express the probability d W as a function of the half-sum and half-
difference of the momenta in the initial and final states. Then the probability 
of a forward transition will be 

( A A' \ 
dWlp+-, p'+—, A, A'Y 
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and for the reverse transition 
( A A' \ 

dTFU + y , P' + —, -Δ, -A'\. 

Since these probabilities are equal, dW (p, p1, Δ, A1) is an even function of 
Δι and A\. 

Hence the nupaber of particles with momentum pi is changed, due to colli-
sions, in unit time by 

d t f i p + y , P '+-2-> 4 ' Af\{n(p)n'{p')--n(p + A)n'(p,+A')}. 

The probability dW we write in the form 
/ A Af \ 

dW = wlp + —, p' +—, Δ, Α'\άτ'άτΔ, 

where d r ' = dpxdpydp'z and dxA is the product of the differentials of the 
parameters which define the collision. 

Thus the change in the number of particles with momentum ρ{ is: 

d r ' drAwip + —, p' + —> Δ, A'\{n(p) n'(p') - n(p + A)n'{p' + A')}. 

(1) 
Let us expand the expression under the integral in a series in powers of 

Ai and A\ (ω should of course be expanded only with respect to Ai} appearing 
in pi + Ai/2 and pi + A'i/2). The zero order terms cancel each other and the 
terms of the first order are 

f / dn dn' \ 
- dx' drAwn'-—A% + <ωη-—Δ'Λ, 

J V dPi dpi J 
where w = w(p, p', A, A') (summation is everywhere implied over indices 
which are repeated twice). But w is an even function of At and A\. Therefore 
the integral written above is equal to zero. 

The second order terms are the following 
f , Ί \AxAk , d2n A Af dn' dn A\A'h d2n' } 

- άτ'drA wl n' + At Ai + % k n \ 
J j 2 dPidpk

 k dp'k dPi 2 dpidj&i 
C , 1 / dw Λ dw\( Λ dn At dn'\ 

_jdT.dT^_^_+4_j^,._+„,;_j. 
Let us integrate two of these terms by parts over άτ', namely: 

2 J Δ l dpi dp'k 2} * * dp', dpk 

I f dw dn' 1 C d*n' 
dr ' άτΔ Δ[ Δί n = — \άτ' άτΔ Δ\ Δ' w 

2 J Δ ι * dpi du 2 J ι k dp', dp'k 

(2) 

-n 
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Since the integration is performed over the whole of p' space, the surface 
integral is equal to zero, because n' = 0 a t infinity. 

As a result the second-order terms give 

f (AtAk , d*n t A{A'k dn dn'\ 
— ατ ατΑ w< n —— > 

J A \ 2 dptdpt 2 dPi 6pk\ 

C [AiA·, dw dn Δ,Δί dw dn') 
- \άτ'άτΑυ>\-^—- n' +——-n- — 4 . 

J { 2 dpi dpk 2 dpi dpk\ 

This can be re-written in the form 

δ C (AtAk/dn AtAk dn'\ 
CIT ax, w{ n 1 n >. 

SPi} 1 2 Bpk 2 dp-k\ 
Thus the integral (1), defining the change due to collisions in the number of 

particles with given momentum is expressed, as it should be, as the divergence 
d ji/d Pi in momentum space, of the flow vector ji in momentum space. The 
components of this flow equal 

f f / M * , dn AtAk dn'\ 

J 1 2 dpk 2 dp'k\ 

As was already noted at the beginning, Δ{ — — Δ\. Therefore in our case the 
flow is 

If the system consists of different types of particles, then the flow ji for a 
given type of particle is equal to 

. ^ Γ , (7 dn' dn\CAiAk ) 

"-ψτ'ϊ'^-"'-^))—-"4 <3) 

where the summation is performed over all the kinds of particles in the system, 
unprimed variables being related to the given type of particle and primed 
variables to each type of particle in turn (in this number, of course, is included 
the given type). 

Let us appty the formulae thus obtained to the case of a system of particles 
with Coulomb interactions, which we are considering. For this system let 
us determine the change in the momenta of two particles with charges, e and 
e' and momenta p{ and p\ moving at some distance from one another. Let q 
be the impact parameter, i.e. the distance at which the two particles would 
pass each other if there were no interaction between them, and wf their relative 
velocity. Let us consider this collision in the co-ordinate system in which the 
particle e' is at rest, with the #-axis along the direction of motion of the particle 
e, which has velocity u. We consider the scattering angle to be small. Because 
of this the momentum along the #-axis does not change to this approximation, 
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and only the momentum in a direction perpendicular to the #-axis (along the 
y-axis) changes. This change equals 

+ 00 

dt, W-v 
where U = ee'/r is the energy of interaction between the particles. 

Since the scattering is considered to be small it is possible to consider, in 
the integral, tha t the motion is unperturbed, i.e. directed along the x-axis. 
Then 

+ 00 

ee'gdt 2ee' 
Δ > ~ \ (ρ2 + u2 ί2)3/2 ρ u 

Going back to an arbitrary co-ordinate system, and noticing tha t the vector 
of the change in momentum is directed along the direction of Qi we find 

2ee ' ρι 
Δι= - ^ . (4) 

Let us now calculate the integrals 

rAtAt C2e*e'* & 6k 
Ä i * = J"~2~~ w Δ=]~^—^rwdTA 

ιΔ J 

appearing in (3). n' dW = ω η' d r ' d r^ is the number of collisions per unit 
time with particles e', undergone by the particle e with momentum pi, in 
which its momentum changes by the given value A^ In other words this is 
the number of collisions in which particles e and e' pass a definite distance ρ̂  
apart, the particles e' having definite momentum ρ[ (Α{ is completely determined 
for given p[ and ρ )̂. Denote by v^ and v[ the velocities of the particles e 
and e'. Their relative velocity ut = v{ — v\ has absolute value u. The number 
of collisions of the particle e which take place at a given distance Qi with the 
given relative velocity ut is obviously 

UQ dρ dcpu' d r ' , 

where <p is the angle determining the direction of ρ̂  (at the given velocity 1*$ all 
the possible ^ lie in one plane which is perpendicular to ι^; φ is the angle in 
tha t plane). 

Hence we can change wdxA to wρdρd<p in the integrals <xik 

2fe^rQiQk 

U J ρ3 

In order to perform the integration, introduce, temporarily, co-ordinate 
axes with the #-axis directed along uit Then ρ» = 0 since ρ̂  J_ u{. Because of 
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this ocxx = ocxy = ocxz = 0. Also ocyz = 0 since the integral of qy ρζ = ρ2 sin φ 
cos φ over all angles φ vanishes. 

Thus for (xyy and oczz, which are not equal to zero, we find (substituting 
ρζ = ρ sin φ, qy — ρ cos φ and integrating with respect to d φ) 

1 * (5) 
u -I 

The integral appearing here diverges logarithmically. The divergence at 
small ρ is due to the fact tha t for small ρ the scattering angle of the particles 
in the collision is large, and hence all the previous formulae are no longer valid. 
If the exact formulae are used then there would, of course, be no divergence 
(at small ρ). 

Since a logarithm is insensitive to small changes in its argument, we can 
take in (5), as the lower limit £ x , tha t value ρ a t which the scattering angle be-
comes of the order of unity, i.e. the interaction energy e e'/ρ becomes of the 
order of the mean kinetic energy ε of the particles: 

ee ' 
ρ ι = — . 

As far as the upper limit ρ2 in (5) is concerned, two cases must be distin-
guished. If the total charge on the particles in the system is not equal to zero, 
then as the upper limit one must take the linear dimension R of the region in 
which these particles lie. In the most interesting case, when the total charge 
of the system is zero, the charges are screened and as ρ2 one should take the 
Debye-Hückel screening radius. This radius is l/κ where κ is the coefficient 
in the screened Coulomb law e'xrjr and is determined by the well-known equation 

TV- e2 

κ ~L kT ' 

Here the summation is taken over all types of particles in the system and N\ 
is the number of particles of the i th kind in 1 cm3. To an order of magnitude 
κ ^ v N e2jhT where N is the number of particles in 1 cm3. But kT ^ ε so 
that κ = \ N e2/e. Thus we can take for the upper limit in (5), 

02 
Ne2 

Substituting ρχ and ρ2 in (5) we find 
π e2 e' 

U/ 

where 

-̂'4(ΐΓ <β) 
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Returning now to an arbitrary co-ordinate system we can write, in tensor 
form, 

. , . T u*ött- utuk xilc = πε* e * L — 
ua 

where . . 
[ 1, * = k, 

0ik = L < + *. 
Substituting this expression into (3) we find the flow of particles e in momen-

tum space in the form 

% = ne^L^e'2] in-—- n'-—\ d r \ (7) 
J I dPk dpk) u* 

The transport equation in the presence of a temperature gradient and an 
external electric field E{ has the form 

dn dn dT ^ dn dfa , v + Vi + eEi + —— = 0. (8) 
dt dT dXi dpi dvi 

The Maxwellian distribution makes jt zero, as it should do. 
I t would, in principle, be possible to determine from this equation the elec-

trical and thermal conductivity of the gas consisting of the charged particles. 
This, however, meets considerable mathematical difficulties. We restrict 
ourselves to a qualitative determination of the conductivities, namely, we 
determine, to within an order of magnitude, the mean free path I of the 
particles, from which it is possible to find the electrical and thermal conduc-
tivities by the use of well-known formulae. 

Let N be (to an order of magnitude) the number of particles in 1 cm3, 
e the charge of the particles and T the temperature of the gas. As is seen from 
(7), when it is substituted into (8), N and e appear in the formulae only in the 
combination N L e4. Therefore, the mean free path of the particles should be 
determined only in terms of the quantities e4 LN\ kT and the mass of the par-
ticles. From these one can construct only one combination having the dimen-
sions of a length, namely (k ̂ )2/(β4 LN). To within an order of magnitude the 
mean free path will be equal to just this ratio 

'■7IF- (9) 

This result disagrees with Gabor's formulae1, which points to the incorrect-
ness of his assumptions. 

Let us consider a gas consisting of electrons and ions. Because of the large 
diflference in masses between the electrons and ions, the exchange of energy 
by the electrons amongst themselves and the ions amongst themselves will 
take place much more rapidly than the exchange of energy between the elec-
trons and ions (in a collision between a very heavy particle and a very light one, 
the energy of each of them is almost unchanged). Because of this the equilib-



TRANSPORT EQUATION FOR COULOMB INTERACTIONS 169 

rium in the energies of the electrons amongst themselves and the ions amongst 
themselves will be established much sooner than the equilibrium between the 
unlike groups. Let us consider tha t such an equilibrium is already established, 
i.e. the electrons and the ions both have a Maxwellian distribution, but the 
temperatures of these distributions, T' and T, are different. Let us find the 
rate at which the equilibrium between the electrons and ions is established, 
i.e. the rate of equalisation of the temperatures T' and T. 

Let us work out the energy transmitted by the electrons to the ions in unit 
time (in 1 cm3) by collisions between them. Let e, m and e', m' be the charges 
and masses of the ions and electrons and n and n' their distributions: 

n = N(2nrnkT)-*/2e-elkT, n' = F (2 j r m ' J f c i T ) - 3 / 2 e ' £ ' / H ' ; (10) 

N and N' are the numbers of ions and electrons in 1 cm3 and ε and ε are their 
energies. The flow of ions in momentum space is, according to (7): 

ji = ne2e'*L\[n-—- n'—— d r ' (11) 
J V dPk dpkJ u* 

(all primed variables correspond to the electrons, unprimed variables to the 
ions). In the sum in (7) only one term remains, since the term which corresponds 
to the collisions of ions one with another vanishes, because the distribution 
of the ions is Maxwellian. 

The change per unit time in the number of ions with given momenta due 
to collisions with electrons is — d jijd p^ Thus the change in their energy is 

-l· 
Spi 

or, integrating by parts 

- d r . 

-\E^aT=\jiikar=\jiVia' 
(d ejd Pi = Vi). Since the integration is taken over all momentum space, the 
surface integral disappears. 

Substitute the distributions (10) into (11). We have 

dn n de n vk dn' n' v'k 

~ä̂ T~ ~ΤτΎρΙ~ ~"T¥' ^p[ = kT ' 
Then we find 

]i = ne2e'2 L\ nn'[— —) — d 
k T IcT') if3 

But 

Ann'\ vk[ ) + — Ϊ - — - d T 

U2 6ik - UiUk 
uk Z = U 

CPL 6 a 
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and therefore 

ji = π e2 e'2 LI ------ — , m ) \ nn' d r άτ'. 

The change in energy, which we are seeking, is then equal to 

Since the mass of the electrons is much less than the mass of the nuclei, 
their velocity v'^ is much larger than the velocity of the ions vk. Because of 
this one may consider that %= v\. Then 

I % VA d T = π e2 e'2 £ ——- » w ——- — άτ d t . 

Averaging over the angles between «4 and v'{ we find 

j^i d T =4"e 2 e'2 i(TV-i^){% i ; 2 d T|fd T'· 
Substituting (10) we have: 

w«2dT = iV , — d r ' = 4 π ^ Ί e 2*a" «'dv' 
J m ) v' \2nkT'J J 

„ , m ' = 2iV' 
2π&Τ' 

As a result we find: 

J 2iViV'e2e'2(2rcm')1/2£ 

If there are ions of different types in the gas, the total energy transmitted 
by the electrons to the ions per unit time is 

2N'e'*(2nm')ll*Lgm _ ^ N e2 

* * W (*"-ΒΣ — da) 
(Σ is over all types of ions). 

The energy of the electrons in 1 cm3 is equal to 3N' kT'j2. Dividing the 
energy (12), lost by the electrons in unit time, by 3 ^ ' Jc/2, we obtain the rate 
of change of the electron temperature J7': 

dT' 4 e'2(2rcm')1/2 (Tf - T) Ne2 

" Ι Γ = ~T {Μψ2 L^~^T' (13) 
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