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Recently, a family of models that couple multifluid systems to the full Maxwell equations 
have been used in laboratory, space, and astrophysical plasma modeling. These models are 
more complete descriptions of the plasma than reduced models like magnetohydrodynamic 
(MHD) since they are derived more closely from the full kinetic Vlasov-Maxwell system, 
without assumptions like quasi-neutrality, negligible electron mass, etc. Thus these 
models naturally retain non-ideal MHD effects like electron inertia, Hall term, pressure 
anisotropy/nongyrotropy, displacement current, among others. One obstacle to broader 
application of these models is that an explicit treatment of their source terms leads to 
the need to resolve rapid processes like plasma oscillation and electron cyclotron motion, 
even when these are not important. In this paper, we suggest two ways to address this 
issue. First, we derive the analytic solutions to the source update equations, which can be 
implemented as a practical, but less generic solver. We then develop a time-centered, 
locally implicit algorithm to update the source terms, allowing stepping over the fast 
kinetic time-scales. For a plasma with S species, the locally implicit algorithm involves 
inverting a local (3S + 3) × (3S + 3) matrix only, thus is very efficient. The performance 
can be further increased by using the direct update formulas to skip null calculations. 
We present benchmarks illustrating the exact energy-conservation of the locally implicit 
solver, as well as its efficiency and robustness for both small-scale, idealized problems and 
large-scale, complex systems. The locally implicit algorithm can be also easily extended 
to include other local sources, like collisions and ionization, which are difficult to solve 
analytically.
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1. Introduction

In this paper we describe numerical methods to update source terms for the multifluid plasma equations coupled to 
Maxwell equations. These models consist of equations of velocity moments for each plasma species s, in the conservative 
form,

∂t (msns)

∂t
+ ∂

(
msnsu j,s

)
∂x j

= 0 (1)

∂
(
msnsu j,s

)
∂t

+ ∂Pi j,s

∂x j
= nsqs

(
Ei + εi jku j,s Bk

)
(2)

Here, qs and ms are the particle charge and mass, εi jk is the Levi-Civita symbol. The moments are defined as

ns (x) ≡
∫

f sdv (3)

msns (x) ui,s (x) ≡ ms

∫
vi fsdv (4)

Pi j,s (x) ≡ ms

∫
vi v j f sdv (5)

with f s (x,v, t) being the phase space distribution function. We will neglect the subscript s hereinafter for convenience. For 
completeness, Pi j relates to the more familiar thermal pressure tensor

Pij ≡ m

∫
(vi − ui)

(
v j − u j

)
f dv (6)

by

Pi j = Pij + nmuiu j. (7)

For simplicity, non-ideal effects like viscous dissipation are neglected. The electric and magnetic fields E and B are evolved 
using Maxwell equations

∂B

∂t
+ ∇ × E = 0 (8)

∂E

∂t
− c2∇ × B = − 1

ε0

∑
s

qsnsus (9)

with c = 1/
√

μ0ε0 being the speed of light.
To close the system, the second order moment Pi j or Pij must be specified. For example, a cold fluid closure simply sets 

Pij = 0, while an isothermal equation of state (EOS) assumes that the temperature is constant. Or, assuming zero heat flux 
and that the pressure tensor is isotropic, we can write an adiabatic EOS for Pij = pI

∂E
∂t

+ ∇ · [(p + E)u] = nqu · E, (10)

where

E ≡ p

γ − 1
+ 1

2
ρ |u|2 (11)

is the total fluid (thermal plus kinetic) energy and γ is the adiabatic index, set to 5/3 for a fully ionized plasma. For 
a plasma with S species (s = 1, . . . , S) this system is closed and has a total of 5S + 6 equations, and are here referred 
to as the five-moment model [1]. More general models can be obtained by retaining the evolution equations for all six 
components of the pressure tensor [2,3] in the so-called ten-moment model

∂Pi j,s

∂t
+ ∂Qi jm,s

∂xm
= nsqsu[i,s E j] + qs

ms
ε[imlPmj],s Bl (12)

where the third moment

Qi jm,s (x) ≡ ms

∫
vi v j vm fsdv (13)

relates to the heat flux tensor defined in the fluid frame
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Q ijm ≡ m

∫
(vi − ui)(v j − u j)(vm − um) f dv (14)

by

Qi jm = Q ijm + u[iP jm] − 2nmuiu jum. (15)

Again, the equations here must be closed by some approximation for the heat-flux tensor [4,5]. Another option is to include 
evolution equations for even higher order moments, e.g., the ten independent components of the heat-flux tensor [6].

Theoretically, the multifluid-Maxwell equations approach the Hall magnetohydrodynamics (MHD) under asymptotic limits 
of vanishing electron mass and infinite speed of light, as demonstrated in great detail by Refs. [7,8,4,9]. All waves and effects 
within the two-fluid picture are retained, for example, the light wave, electron and ion inertial effects like the ion cyclotron 
wave and whistler wave. Particularly, through properly devised heat-flux closures, the ten-moment model could partially 
capture nonlocal kinetic effects like Landau damping, in a manner similar to the gyrofluid models [10,5,11,12].

Although multifluid-Maxwell models provide a more complete description of the plasma than reduced, asymptotic mod-
els like MHD [8,4], they are less frequently used. The reason for this is the fast kinetic scales involved. Retaining the electron 
inertia adds plasma-frequency and cyclotron time-scale, while non-neutrality adds Debye length spatial-scales. Further, in-
clusion of the displacement currents means that electromagnetic (EM) waves must be resolved when using an explicit 
scheme. Fortunately, the restrictions due to kinetic scales are introduced only through the non-hyperbolic source terms of 
Eqns. (2), (9), and Eqn. (12). Therefore we may eliminate these restrictions by updating the source term separately either 
exactly or using an implicit algorithm. This allows larger time steps and leads to significant speedup, especially with realistic 
electron/ion mass ratios. Developing such source term update schemes is the focus of this paper. The speed of light con-
straint still exists, however, can be greatly relaxed, using reduced values for the speed of light and/or sub-cycling Maxwell 
equations. Of course, an implicit Maxwell solver, or a reduced set of electromagnetic equations like the Darwin approxima-
tion [13], can also relax the time-step restrictions. In either case, though, a fully implicit approach is needed, which is not 
considered in this paper.

The rest of the paper is organized as follows. First, the source term update equations are written down as time-dependent 
constant-coefficient ordinary differential equations (ODEs). We then briefly discuss the availability of exact solutions for the 
source update equations, but subsequently focused on a more efficient and versatile locally implicit algorithm. It is shown 
that the time-steps are restricted solely by the speed of light, and that the algorithm preserves positivity of density and 
pressure. The accuracy and robustness of both (i.e., the analytic solution and the locally implicit solution) methods are 
demonstrated through a few standard benchmark problems, as well as through an application to large-scale modeling of the 
interaction between solar wind and Earth’s magnetosphere. The appendix gives a thorough derivation of the exact solutions 
plus direct formulae for the locally implicit schemes. The eigensystem of the ten-moment model, useful for implementing 
approximate Riemann solvers for this system, is provided in the appendix too.

2. An operator splitting scheme and the source term update equations

The multifluid-Maxwell equations can be split into a homogeneous part and a source term update part. The key idea is 
to solve these two parts separately and apply high accuracy schemes on both.

Ignoring sources, the homogeneous equations can be solved in the conservation law form

∂Q

∂t
+ ∇ · F = 0 (16)

where Q is the vector of conserved quantities (fluid moments and electromagnetic field) and F are the corresponding fluxes. 
See Eqns. (1)–(3) of [1] for the conservation form of five-moment equations, and Eqns. (24)–(25) of [2] for the conservation 
form of the ten-moment equations. An explicit solution of Eqn. (16) is subject to light speed constraint c�t/�x < CFL, 
where �x is the (smallest) grid spacing and CFL ≤ 1 is determined from the spatial scheme used. The often more restrictive 
constraints due to kinetic scales are contained in the remaining non-hyperbolic, source term update part only. This implies 
that it is possible to eliminate these constraints if a proper implicit algorithm is applied to update the source term.

Deferring the source term details to the next paragraph, we represent the homogeneous update schematically as the 
operator exp (LH�t) and the source update as exp (LS�t). The full algorithm can now be written as the Strang-splitting 
sequence that has second order accuracy in time [14],

exp (LS�t/2)exp (LH�t)exp (LS�t/2) . (17)

The remainder of this paper is devoted to developing schemes for exp (LS�t). As for exp (LH�t), one can use a number of 
schemes, including the finite-volume (FV) wave-propagation scheme [15,1], a variation of the MUSCL algorithm [16], or a 
discontinuous Galerkin (DG) scheme [17–19], among others. Each of these schemes has advantages: finite-volume methods 
are robust and easy to implement, while DG schemes are high-order and have the potential of providing higher accuracy at 
a lower cost compared to second-order schemes.
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Now we consider the source update equations. For the five-moment model, the source terms are⎧⎨
⎩
(

∂Js
∂t

)
source

= ω2
s ε0E + Js × �s

ε0
(

∂E
∂t

)
source = −∑

s Js.
(18)

Here, �s ≡ qsB/ms is the cyclotron frequency, ωs ≡
√

q2
s ns/ε0ms is the species plasma frequency, and we use currents, 

Js ≡ qsnsus , instead of momentum for convenience. The subscript “source” means that update equations are for the source 
terms, separate from the hyperbolic part. In the rest of the paper, these subscripts will be ignored for simplicity. During the 
source term update, the plasma density ns and magnetic field B remain unchanged and this coupled system has an energy 
invariant,

∑
s

1

2

J2
s

ε0ω
2
s

+ ε0

2
E2 = const. (19)

It should be noted that, superficially, one needs to solve the source term for the scalar energy equation. However, this 
source term only allows energy transfer between the plasma and the electric field and does not alter the plasma pressure. 
Therefore, we may accumulate changes in the bulk kinetic energy to update the total internal energy. This avoids truncation 
errors that might lead to negative plasma pressure if we solve the scalar energy source term equation.

The ten-moment model has the same source terms for currents and the electric field. In addition, there are source terms 
in the pressure tensor equation (12) that accounts for a rotation around the background magnetic field

∂Ps

∂t
= Sym2 (Ps × �s) . (20)

Here, Sym2 (V) denotes the space of all symmetric tensors of 2nd order defined on the tensor V.

3. A locally implicit scheme

3.1. Availability of exact solutions

During the source term updates Eqn. (18) and (B.16), the plasma densities and magnetic field remain unchanged. Con-
sequently, the equations are effectively constant-coefficient linear ODEs in time. They can be solved exactly to obtain 
currents/electric field or pressure tensor as functions of time. Ref. [3] obtained such exact, analytic solutions in the sim-
plified two-fluid case. After tedious algebraic derivations, we can unify and generalize this procedure for any number of 
species. The derivations and resulting algorithms can be found in Appendix B.

3.2. The locally implicit scheme

The exact solution algorithm is very complex, though feasible, and relatively expensive, thus it is not optimal for large-
scale simulations. In this section, we propose to use a locally implicit scheme that is more efficient. In this section, we 
present a locally implicit scheme to update the source term equations more efficiently using a centered discretization in 
time. Using this scheme, it is also straightforward to include additional source terms that depend on local quantities only, 
e.g., collisions and ionization. It is worthwhile to mention that schemes using implicit–explicit (IMEX) timestepping to treat 
the source terms are described in [20–22]. A more recent work coupled a biased implicit treatment of the source term in 
with the hyperbolic update [23]. However the scheme presented here is considerably simpler as we work with the non-
conservative form of the equations just for the source updates. In any case, the scheme in [20] is implicitly contained in earlier 
two-fluid papers [24,1], which essentially only performed a single (or few) iteration(s) of the implicit scheme in [20]. Note 
that this our algorithm is inspired by [25] that used a similar approach to solve the Lorentz and Ampere update equations 
for current Js of each plasma species and electric field E. The major difference is that we have incorporated the Lorentz-
Ampere update equations into the full multifluid-Maxwell system and significantly broadened the scope of applications. In 
addition, we present a more complete analysis of the algorithm along with broader application examples.

3.3. The scheme

For numerical stability, it is intuitive to apply the backward Euler method,{
Jn+1
s = Jn

s + �t
2

(
ω2

s ε0En+1 + Jn+1
s × �s

)
En+1 = En − �t

2ε0

∑
s J̄s

(21)

which was adopted by [21]. However, this is a first order method and damps the oscillatory solutions. A slight modification 
improves both stability and energy conservation. For convenience, we introduce time-centered quantities
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J̄s ≡ (Jn+1
s + Jn

s )/2 and Ē ≡ (En+1 + En)/2 (22)

The first part of our scheme is given by{
J̄s = Jn

s + �t
2

(
ω2

s ε0Ē + J̄s × �s
)

Ē = En − �t
2ε0

∑
s J̄s

(23)

and can be rearranged into the form{
J̄s − �t

2

(
ω2

s ε0Ē + J̄s × �s
) = Jn

s

Ē + �t
2ε0

∑
s J̄s = En

⇔ Ml.h.s.

[
J̄s

Ē

]
=

[
Js

E

]
(24)

with Ml.h.s. being the (3S + 3) × (3S + 3) constant coefficient matrix.
Eqn. (24) is a system of linear, constant-coefficient ODEs for the 3S + 3 unknowns J̄s and Ē and can be solved with any 

linear algebra routine to get[
J̄s

Ē

]
= M−1

l.h.s.

[
Js

E

]
. (25)

The final updated currents and electric field can then be determined by

En+1 = 2Ē − En and Jn+1
s = 2J̄s − Jn

s . (26)

We call this scheme the locally implicit scheme as it involves only data in a single cell and requires the inversion of only 
a (3S + 3)2 matrix. No global matrix inversion coupling all cells in the domain is required. If a DG scheme is used, then 
the source update needs to be computed at each node of the selected finite-element node, or, projected onto the selected 
modal basis, if using those. In Appendix D, inspired by [25], we show that it is also possible to write down the resultant 
formulae for the complete linear algebra calculations and skip the “null” calculations (e.g., zeros multiplied by zeros) for 
significant speedup.

3.4. Accuracy and stability

Indeed, the locally implicit scheme is an implicit midpoint method, giving an error of order O  
(
(�t)2). The stability 

of the algorithm can be studied by a von Neumann analysis. We introduce a time-dependence of e−iωt , where ω is the 
(possibly complex) numerical frequency. For plasma oscillations the source update has the numerical dispersion relation 
(see Section. E)

4/�t2 tan2(ω�t/2) = ω2
p (27)

showing that the time-step is not restricted by plasma frequency. In a similar way, we can show that the time step is not 
restricted by cyclotron frequency, either.

3.5. Conservation properties

To ensure that the number density and pressure remain positive, we first observe that the source update Eqns. (30) do 
not modify either of these quantities. Hence, positivity violations can only occur in the homogeneous updates of the fluid 
quantities.

The multifluid system, in the absence of dissipation and with appropriate boundary conditions,1 conserves the total 
energy, i.e. dE/dt = 0, where

E =
∫ [∑

s

(
1

2
msu2

s + 3

2
ps

)
+ ε0

2
E2 + 1

2μ0
B2

]
dx (28)

and the integration is taken over the whole domain. The source update, Eqns. (23) as can be shown easily, conserve the 
discrete form of Eqn. (19). This can be further understood as the merit of the implicit midpoint method that it preserves 
the magnitude of any oscillatory systems. Also, solving the homogeneous fluid equation in conservation law form conserves 
the fluid energies. Hence, the conservation of the total discrete energy, including electromagnetic energy, depends on the 
scheme selected to solve Maxwell equations. In general, upwind finite-volume schemes will not conserve the EM energy, 

1 Energy conservation for homogeneous fluid equations is exact for periodic boundaries. However, for wall boundary small energy errors arise due to 
diffusive terms in the numerical fluxes used. One can always use a central flux at walls, but this complicates the scheme, and is not always worth the effort 
in practice.
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but decay it. Hence, unless an energy conserving finite-volume/difference scheme is used to update the EM fields, the total 
energy is not conserved by the discrete scheme. Even when using an upwind scheme, lack of energy conservation is not 
always a problem, however, as the energy conservation error scales as the order of the scheme, and hence can be controlled 
by using a finer mesh or a higher order method.

3.6. Including collisions

Following [25], we may incorporate frictional collisions by slightly modifying the current source term as(
∂

∂t
+ νs

)
Js = ω2

s ε0E + Js × �s (29)

where νs is a constant collision frequency. The additional collision term converts the solution from purely oscillatory to 
damped oscillations. The corresponding locally implicit scheme is written as{

J̄s = Jn
s + �t

2

(
ω2

s ε0Ē + J̄s × �s − νs J̄s
)

Ē = En − �t
2ε0

∑
s J̄s.

(30)

This is still a constant coefficient linear system, thus can also be solved using any linear algebra routine. In a similar manner, 
we may include additional source terms, e.g., ionization, gravity, chemical production, as long as the terms involves only 
local quantities (i.e., no gradient calculations etc.).

4. Benchmark problems

In this section, we present a few benchmark simulations to illustrate the properties of the locally implicit scheme. In all 
but the first test, we use a dimensionally split version of the FV discretization described in [1]. Note that the purpose of 
the paper is not to study the detailed physics of these problems, but to simply show that the algorithm presented above is 
efficient and stable where the explicit algorithm would be unstable, and produces qualitatively correct results.

4.1. Plasma oscillation

As our first benchmark, we consider the plasma oscillation of one species locally, i.e., within a cell. In other word, we 
disregard the spatial integration Eqn. (16) and integrates only Eqn. (18). The purpose is to verify the conservation property 
of the time-centered scheme. The initial condition consists of a uniform, stationary plasma and vanishing magnetic field. 
Perturbation is imposed on Ex . Therefore the initial condition is an eigenvector of ω = ωp (see the exact solution Eqn. (B.8)). 
The ions are assumed to be immobile. We performed three simulations as presented in the three columns in Fig. 1. The 
upper and lower rows are the time evolution of Ex and the phase-diagram for the normalized electric field Ẽx and current 
J̃ x,e (see Eqn. (B.3)), respectively. Ideally, the system should oscillate at the plasma frequency ωpe and the total normalized 
energy Ẽ2

x + J̃ 2
x,e should remain constant following energy conservation.

The simulation in the left column uses the first-order backward-Euler implicit algorithm. Even with a small time step 
�t = 0.1/ωpe , the solution is quickly damped. In comparison, the middle-column simulation that uses the time-centered 
implicit algorithm is able to model the oscillation at the correct frequency and does not suffer from any damping. The 
conservation property of the time-centered algorithm can be further confirmed from the right-column run that uses a large 
time step �t = 10000/ωpe with the time-centered algorithm (see the lower panel). At such a large time step, however, the 
plasma oscillation are aliased by slower oscillations that are supported by the time step size.

4.2. Plasma wave-beach

We now show a few more practical problems that couple the homogeneous part and the source term part. The first is 
a “plasma wave-beach” problem, in which power is propagated in a 1 m long hydrogen plasma of increasing density, such 
that the wave suffers a cutoff at x = 0.58 m. Letting δt = 1/100c, the plasma profile is ωe(x)δt = (1 − x)5. For the 100 cell 
simulation shown in Fig. 2, hence, the time-step, restricted only by the CFL condition, is ωe�t = 25, 12.5 times larger than 
would be allowed by a fully explicit scheme, which has a restriction ωe�t < 2.

4.3. Magnetic reconnection in a Harris current sheet

The second simulation is of magnetic reconnection in a Harris current sheet. For this, the standard GEM reconnection 
challenge parameters are used [26], with an initial equilibrium magnetic field Bx(y) = B0 tanh(y/L), supported by a out-of-
plane current sheet with both electrons and ions carrying current. The simulation parameters are

λ

di
= 0.5,

mi

me
= 100,

Ti

Te
= 5,

nb

n0
= 0.2,

V A0

c
= 0.05 (31)
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Fig. 1. Electron plasma oscillation using the first-order backward Euler scheme (left column) and locally implicit time-centered algorithm (middle and right 
columns). Upper row: Temporal evolution of Ex . Lower row: Temporal evolution of total normalized energy Ẽ2

x + J̃ 2
x,e . The time-centered simulations are fully 

oscillatory without any damping or instability.

Fig. 2. Propagation of an electromagnetic (EM) wave into a “plasma wave-beach”. Shown are contours of the y-component of the electric field, time 
increasing from left to right. The EM wave is launched by applying a current ( J y ) at x = 1, with frequency ωδt = π/10, with δt = 1/100c. The wave suffers 
a cutoff (black dashed line), reflecting back into the low-density region, creating a standing wave pattern late in time. The time-step is 12.5× larger than 
for a fully explicit scheme, which would have a restriction ωe�t < 2.

where di = c/ωpi is the ion inertial length, Ti and Te are the ion and electron temperatures, and v A0 = B0/
√

μ0n0mi is the 
Alfvén velocity. The plasma beta is unity. A grid of 64 × 32 cells was used, with a CFL number of 0.9, resulting in a time-
step of ωpe�t ≈ 3.6. The cell spacing is about 27× larger than the Debye length. The results are summarized in Fig. 3. Even 
on this coarse mesh, with the plasma frequency unresolved and the Debye length severely under-resolved, the algorithm 
is stable and produces results qualitatively similar to higher resolution results published in [1,19]. In detail, the left panel 
of Fig. 3 clearly shows the reconnected electron current sheet structure. The middle panel shows the quadrupolar out-of-
plane magnetic field formed due to Hall currents, which would be vanishing in an MHD simulation where the Hall effect 
is missing. The right panel shows the dissipation regions marked by nonvanishing J · E, which is intensified at the X-point 
and in the outflow exhaust, in agreement with prior fully kinetic studies. More thorough studies of magnetic reconnection 
in the context of Earth’s magnetosphere, etc. can be found in [27] and [4].

4.4. Orszag-Tang vortex

The fourth test is five-moment simulation of the Orszag-Tang vortex [28], a 2D problem extensively used to benchmark 
and compare numerical codes [29–31]. We use a [0,2π ]× [0,2π ] periodic domain on a 128 ×128 grid. The initial condition 
consists of uniform total mass density ρ = 25/9, uniform total pressure p = 5/3, in-plane flow vortex vx = − sin y, v y =
sin x, and magnetic field vortex Bx = − sin y, B y = sin (2x). The ion charge/mass ratio is so that the ion inertia lengths based 
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Fig. 3. Results from the 2D GEM reconnection simulation that is severely under-resolved but remains stable. Left: Out-of-plane electron current and contours 
of in-plane magnetic field. Middle: Out-of-plane magnetic field. Right: J · E dissipation.

Fig. 4. Total mass densities (i.e., electron plus ion mass densitiesupper row) and J · E dissipation (lower row) at different stages (different columns) in the five-
moment Orszag-Tang vortex test. The simulation is performed on a low-resolution 1282 grid, with �x about 7× the electron Debye length λDe0. Structures 
like shocks and current sheets are correctly captured.

on initial background density is di =
√

ρiq2
i /ε0m2

i = 2π/25. Other parameters include γ = 5/3, μ0 = 1, c = 20, mi/me = 25, 
and pi/pe = 1. As shown in the upper row of Fig. 4, the formation of shocks and thin current layer at the center is clearly 
captured. The lower panel of Fig. 4 shows at different stages the dissipation develops in localized layers at the shocks. In 
this simulation, the grid size �x is about 7× the electron Debye length λDe0 based on the background parameters. Though 
at such a low resolution with kinetic scales severely under-resolved, the simulation remains stable and the time evolution 
stages of various structures are correctly reproduced.

4.5. Solar wind-magnetosphere interaction at the Earth

Finally, we present results of 3D, large scale simulation of the Earth’s magnetosphere under the impact of solar wind 
plasmas transported from the sun (from the left side of the perspective view in Fig. 5). The system’s evolution is largely 
controlled by magnetic reconnection at both the sun-facing day-side and the trailing night-side. At the dayside, this hap-
pens between the Earth’s dipolar magnetic field and the southward interplanetary magnetic field. At the nightside, it is 
between the highly stretched dipolar field. Both reconnection scenarios are clearly captured in the simulation. Later, we will 
demonstrate the tail reconnection as an example.

The simulation domain has the Earth at the origin, the x-axis is along the Sun-Earth line and points to the Sun, and the 
z-direction is northward. The domain spans [−63, 17] along x in units of the Earth’s radii, and [−81, 81] in the other two 
directions. A structured stretched nonuniform grid of total size 1600 × 2200 × 2200 is used to achieve high resolution, up to 
�x ≈ 0.15REarth ≈ 2de , near the Earth and near the day- and night-side reconnection sites. Here, de is the electron inertia 
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Fig. 5. Perspective view of the Earth’s magnetosphere from a Ten-Moment simulation. The solar wind impinges from the left side and carries southward 
interplanetary magnetic field. The white streamlines are magnetic field lines in the meridional plane (xz-plane, which is approximately the paper plane), 
indicating the thinning of a current sheet on the night-side, along with two plasmoids. The blue-red contours in the xz-plane represent the y component of 
the magnetic field due to the Hall term intrinsic to the model. The yellow-scale contours in the xy-plane represent ion number density. Its sharp boundary 
at the dayside (left side) marks the bow shock due to the supersonic and superAlfvénic solar wind flow. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

length in the solar wind. Further away from Earth and the reconnection regions, the grid resolution ramps down to as low 
as �x ≈ 20REarth. During the simulation, the following fixed solar wind density, velocity, pressure, and magnetic field are 
applied at the upstream boundary at x = 17REarth:

ρsw = 5 amu/cm3, vsw = [−400, 0, 0] km/s, psw = 3.45 × 10−12 Pa; B = [0, 0, −5] nT.

All other outer boundaries are open and perturbations are allowed to exit the domain. Other simulation parameters include

mi

me
= 25,

pe,sw

pi,sw
= 8,

di,sw

REarth
= 0.375, c = 3000 km/s.

Here, ms , ps,sw, and ds,sw are the mass, pressure, and inertial length of the species s (electron or proton ion), and c is the 
speed of light artificially reduced to lower the computational cost. The simulation lasted 3600s in physical time, and took 
about 2 million core hours to finish on Pleiades, a petascale supercomputer housed at the NASA Advanced Supercomputing 
(NAS) facility.

Figure (5) shows a perspective view snapshot. The yellow-white-coded contours represent the ion number density in 
the equatorial plane. Their dayside boundaries mark the sharp shock due to the supersonic and superAlfvénic inflow. The 
blue-red-coded contours are the non-vanishing B y in the xz plane due to the Hall effect contained in the multifluid model. 
The white streamlines are magnetic field lines in the same plane. The snapshot clearly shows the formation of plasmoids, 
an coherent structure containing isolated regions of magnetic fluxes. The relaxation of field lines after ejection and the birth 
of a new plasmoid are depicted in the last two frames, indicating a repeating life-cycle of the system.

Solar wind-magnetosphere interaction is a critical link of the space weather cascade chain. The locally implicit source 
algorithm discussed here allows efficient multifluid-Maxwell simulations of such global systems by stepping over small ki-
netic scales that are not important in most of the simulation domain. In general, planetary/moon magnetosphere physics are 
complicated system sciences. Interested readers may refer to [32,33] for applications of this model to other magnetosphere 
systems.

5. Conclusions

Multifluid-Maxwell models have been rapidly gaining interest recently in laboratory, space, and astrophysical plasma 
physics modeling [4,34,33,23,35,22,36,37,11,38–43]. In this paper, we have developed a locally implicit schemes to integrate 
the source terms for such systems. Numerical restrictions due to kinetic scales like plasma and cyclotron frequencies are 
eliminated. The calculation involves only local (one-cell) inversion of a 3S + 3 matrix, where S is the number of species. 
Direct formulae that avoid null calculations in full matrix operations are derived that can be used to speed up the algorithm. 
The stability of the source term solver alone and the complete coupled system is validated using a few benchmark problems, 
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ranging from small, idealized problems to large, complex systems. For completeness, we also derived the exact solutions to 
the source term equations, which is often more expensive to compute but nevertheless can be implemented as a base 
benchmark solver.

Eliminating the restrictions due to kinetic scales is crucial for the practical application of the multifluid-Maxwell model. 
The coupled system is still constrained by the CFL condition due to speed of light, but this is often a less demanding 
requirement. The locally implicit algorithm enables us to model large, multi-scale systems by stepping over smallest scale 
physics that might not be crucial for the global picture. In fact, we have successfully applied our model to plasmas in a 
vast range of problems [4,32,34,33,27,5,46,44,45]. The capability to retain finite order kinetic physics (Hall term, electron 
inertia, pressure non-gyrotropy etc.) of the coupled multifluid-Maxwell model is desirable for the study of many problems, 
e.g., magnetic reconnection and turbulence. It is of course also convenient to be able to incorporate an arbitrary number of 
plasma species, particularly electron physics and multi-ion effects.

One notable difference between our model and the Hall MHD model is that, in the former, the time step size does not 
go infinitesimal as the dispersive whistler modes grow. In the multifluid-Maxwell model, the whistler wave frequency is 
correctly limited by the finite electron cyclotron frequency instead of growing to infinity at small wavelengths like in the 
case of Hall MHD [8,4]. This limitation of Hall MHD could be eliminated by employing sophisticated fully implicit algorithms, 
the development of which, however, remains a very challenging research topic [47,48].

Several improvements remain open for future work. Particularly, our algorithm is not asymptotic-preserving (AP), i.e., 
our discretized multifluid-Maxwell equations do not approach the discretized MHD equations as the grid size increases. It 
is possible to follow existing AP Particle-in-Cell methods (e.g., [49]) to devise an AP multifluid-Maxwell algorithm, with the 
help of theoretical framework given in Ref. [9]. Another frontier is the search for improved closures to capture nonlocal, 
kinetic physics that are critical in many applications [5,11,10,12].
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Appendix A. Useful notes on the matrix form of the linear system of equations

A.1. Notes on skew-symmetric and skew-Hermitian matrices

A square matrix M is skew-Hermitian if and only if its conjugate transpose is its negative,

M∗
i j = −M ji . (A.1)

Here the superscript ∗ represents the conjugate operation.
The following properties of a skew-Hermitian matrix M are useful in our derivation:

• M is diagonalizable and all of its eigenvalues are either purely imaginary or zero.
• Eigenvectors of distinct eigenvalues of M are orthogonal to each other.
• If M is also real, then its nonzero eigenvalues come in pairs ±λ.

– Now if v is an eigenvector of M with eigenvalue λ = iω then v∗ is an eigenvector for eigenvalue −iω.
• iM is Hermitian.
• If v is an eigenvector of M with eigenvalue λ = iω, it is an eigenvalue of iM with eigenvalue ω.

A.2. Equivalent eigenvalue problem

Note that solving the constant-coefficient linear ODE system

∂q = M · q, (A.2)

∂t

https://doi.org/10.5065/D6RX99HX
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where M is a skew-Hermitian matrix, is equivalent to solving the time-independent eigenvalue problem

M · v = vλ (A.3)

Here λ and v are the th eigenvalue and eigenvector of M.
To solve the initial value problem, we need to first compute the eigencoefficients c by projecting the initial condition 

onto the eigenvectors,

q (t = 0) =
∑



cv. (A.4)

The temporal evolution then follows

q (t) =
∑



cv exp (λt) . (A.5)

Since M is skew-Hermitian, λ must be purely imaginary or zero. Therefore the solution above is oscillatory or constant in 
time.

In addition, due to the theory of skew-Hermitian matrices, their eigenvectors for distinct eigenvalues must be orthogonal. 
Therefore we can compute the coefficients for nondegenerate eigenvectors by

c = q (t = 0) · v. (A.6)

Note that the degenerate eigenvectors might not be orthogonal, though.

A.3. Constructing real solutions

The solution Eqn. (A.5) can be complex. Thus we need to construct real solutions from them to represent real physical 
values. To do this, we first consider a complex eigenvector v = a + i b of an eigenvalue λ = iω, the corresponding time-
dependent, complex solution to Eqn. (A.2) is

v exp (iωt) = (a + ib) (cosωt + i sinωt)

= a cosωt − b sinωt + i (a sinωt + b cosωt) . (A.7)

Note that −iv is also an eigenvector with eigenvalue iω and has the time-dependent solution

v exp (iωt) = (b − ia) (cosωt + i sinωt)

= a sinωt + b cosωt − i (a cosωt − b sinωt) . (A.8)

Thus we identify two independent real solution bases

a cosωt − b sinωt and a sinωt + b cosωt (A.9)

which are the real and imaginary parts of Eqn. (A.7). In other words, to construct the real solutions, we only need to take 
the real and imaginary parts of an complex eigenvector Eqn. (A.7).

Appendix B. Deriving the exact solutions

For a single grid cell, the procedure to update the source term Eqn. (18) by a time step �t can be outlined below:

Algorithm 1 Update source term Eqn. (18) exactly in one cell.
1: Normalize E and Js to get anti-symmetric; coefficient matrix for Eqn. (18)
2: if If |B| 	= 0 then
3: Decompose the system into a parallel part and a perpendicular part regarding B;
4: for sub-system in {parallel, perpendicular} do
5: Compute eigenvalues and eigenvectors of the coefficient matrix at t = 0;
6: Compute eigencoefficients by projecting the initial state onto the eigenvectors;
7: Compute eigenvectors at t = �t;
8: Compute the updated state at t = �t as combinations of the updated eigenvectors;

9: else
10: Solve the equivalent parallel problem along all three directions;

11: Normalize E and Js back to their original units;
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B.1. Normalization towards an anti-symmetric system

This section addresses the line 1 in Algorithm 1. Eqn. (18) for N species can be written in a matrix form

∂

∂t

⎡
⎢⎢⎢⎢⎢⎣

E
J1
J2
...

JN

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1/ε0 −1/ε0 · · · −1/ε0

ω2
1ε0 −�1 × I 0 · · · 0

ω2
2ε0 0 −�2 × I · · · 0
...

...
...

. . .
...

ω2
Nε0 0 0 · · · −�N × I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E
J1
J2
...

JN−1
JN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1)

where I is a 3 × 3 unit tensor, ωs and �s denote the plasma and signed cyclotron frequency of species s

ωs ≡
√

q2
s ns

ε0ms
, �s ≡ qsB

ms
. (B.2)

It is easier to work with a symmetric or antisymmetric system. This can be achieved by renormalizing the electric field and 
currents. Normalizing E0 and J s0 so that

E = ẼE0, Js = J̃s J s0, (B.3)

and require

J s0/ε0 E0 = ωps, (B.4)

the system becomes anti-symmetric:

∂

∂t

⎡
⎢⎢⎢⎢⎢⎣

Ẽ
J̃1

J̃2
...

J̃N

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 −ω1 −ω2 · · · −ωN

ω1 −�1 × I 0 · · · 0
ω2 0 −�2 × I · · · 0
...

...
...

. . .
...

ωN 0 0 · · · −�N × I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ẽ
J̃1

J̃2
...

J̃N

⎤
⎥⎥⎥⎥⎥⎦ . (B.5)

Eqn. (B.5) can be further decomposed into a parallel part and a perpendicular part with regard to the background magnetic 
field direction. We shall solve these two parts separately.

B.2. Parallel sub-system

This section identifies the eigenvectors needed in the loop 4 of Algorithm 1 for the parallel sub-system. This sub-system 
evolves 

(
E‖;us‖

)
and writes

∂

∂t

⎡
⎢⎢⎢⎢⎢⎣

Ẽ‖
J̃1‖
J̃2‖
...

J̃N‖

⎤
⎥⎥⎥⎥⎥⎦ = M‖

⎡
⎢⎢⎢⎢⎢⎣

Ẽ‖
J̃1‖
J̃2‖
...

J̃N‖

⎤
⎥⎥⎥⎥⎥⎦ , (B.6)

with the coefficient matrix

M‖ =

⎡
⎢⎢⎢⎢⎢⎣

0 −ω1 −ω2 · · · −ωN

ω1 0 0 · · · 0
ω2 0 0 · · · 0
...

...
...

. . .
...

ωN 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ . (B.7)

M‖ has three distinct eigenvalues −i ωp, i ωp, 0 with multiplicities 1, 1, and N − 1, respectively. Here, the total plasma 
frequency ωp is defined as

ω2
p ≡

∑
ω2

s .
s
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Following the procedure in Sec. A.2 and A.3, the N + 1 real solution basis is

⎡
⎢⎢⎢⎢⎢⎣

Ẽ‖
J̃1‖
J̃2‖
...

J̃N−1,‖ J̃N‖

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωp cos
(
ωpt

)
ω1 sin

(
ωpt

)
ω2 sin

(
ωpt

)
...

ωN−1 sin
(
ωpt

)
ωN sin

(
ωpt

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωp sin
(
ωpt

)
ω1 cos

(
ωpt

)
ω2 cos

(
ωpt

)
...

ωN−1 cos
(
ωpt

)
ωN cos

(
ωpt

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1/ω1

0
...

0
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

1/ω2
...

0
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

1/ωN−1
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B.8)

At t = 0, they are⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ωp

0
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
ω1
ω2
...

ωN−1
ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1/ω1

0
...

0
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

1/ω2
...

0
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

1/ωN−1
−1/ωN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B.9)

Note that the N − 1 degenerate eigenvectors for ω‖ = 0 are not orthogonal when N ≥ 3. Thus we cannot compute their 
eigencoefficients following Eqn. (A.6) directly. Instead, we would have to orthogonalize these eigenvectors (using, e.g., the 
Gram-Schmidt procedure) first. However, we note that these eigenvectors do not change in time. As a result, we do not 
need to project onto them. The solution at t can be computed by simply accumulating the incremental changes due to the 
first two basis vectors only. In other words, we only need to do projection onto the first and the second basis vectors in 
Eqn. (B.9), i.e., to compute c0 and c1 following Eqn. (A.6). The updated state at time t = �t is

q‖ (t = �t) = q‖ (t = 0)+c0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωp
[
cos

(
ωp�t

)− 1
]

ω1 sin
(
ωp�t

)
ω2 sin

(
ωp�t

)
...

ωN−1 sin
(
ωp�t

)
ωN sin

(
ωp�t

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωp sin
(
ωp�t

)
ω1

[
cos

(
ωp�t

)− 1
]

ω2
[
cos

(
ωp�t

)− 1
]

...

ωN−1
[
cos

(
ωp�t

)− 1
]

ωN
[
cos

(
ωp�t

)− 1
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.10)

B.3. Perpendicular sub-system

This section identifies the eigenvectors needed in the loop 4 of Algorithm 1 for the perpendicular sub-system. To get an 
elegant form of the sub-system, consider the two perpendicular components of a vector as the real and imaginary parts of 
a complex vector, i.e., Ẽ⊥ = Ẽ1 + i Ẽ2, etc. Then we can write the perpendicular system as

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ⊥
J̃1⊥
J̃2⊥
...

J̃N−1,⊥
J̃N⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M⊥ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ⊥
J̃1⊥
J̃2⊥
...

J̃N−1,⊥
J̃N⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.11)

where the complex coefficient matrix is

M⊥ =

⎡
⎢⎢⎢⎢⎢⎣

0 −ω1 −ω2 · · · −ωN

ω1 −i �1 0 0 0
ω2 0 −i �2 0 0
... 0 0

. . . 0
ωN 0 0 0 −i �N

⎤
⎥⎥⎥⎥⎥⎦ . (B.12)

Since M⊥ is skew-Hermitian, it has N + 1 purely imaginary eigenvalues λ j = iω j that can be obtained (see Sec. C) by 
solving

ω −
∑ ω2

s

ω + �s
= 0. (B.13)
s
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Each eigenvalue has two real, orthogonal solution bases of different polarizations (see Sec. C):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ1

Ẽ2
...

J̃ s1

J̃ s2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sinωt
cosωt

...
ωs

ω+�s
cosωt

ωs
ω+�s

sinωt
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosωt
sinωt

...
ωs

ω+�s
sinωt

− ωs
ω+�s

cosωt
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.14)

At t = 0 they are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1
E2
...

u1s

u2s
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
...

ωs
ω+�s

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

0
− ωs

ω+�s
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.15)

By the theory of Hermitian matrices, the eigenvectors of distinct eigenvalues are orthogonal. Therefore we recover 2 ×
(N + 1) orthogonal solution basis vectors.

Finally, the time-dependent solution to the original perpendicular sub-system Eqn. (B.11) can be obtained following the 
“project-and-evolve” procedure outlined in Sec. A.2.

B.4. Exact solution to the pressure tensor rotation

The source term for the pressure tensor rotation, Eqn. (20), can be written more explicitly as

d

dt

⎡
⎢⎢⎢⎢⎢⎣

P xx

P xy

P xz

P yy

P yz

P zz

⎤
⎥⎥⎥⎥⎥⎦ = q

m

⎡
⎢⎢⎢⎢⎢⎣

0 2B y −2B y 0 0 0
−Bz 0 Bx Bz −B y 0
B y −Bx 0 0 Bz −B y

0 −2Bz 0 0 2Bx 0
0 B y −Bz −Bx 0 Bx

0 0 2B y 0 −2Bx 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P xx

P xy

P xz

P yy

P yz

P zz

⎤
⎥⎥⎥⎥⎥⎦ . (B.16)

It can be solved analytically, too, and can be implemented following Algorithm 2. The rotation matrix R in line 2 of 

Algorithm 2 Update source term for pressure tensor equation for species s exactly in one cell.
1: Compute the rotation angle α (�t) = −�cs�t counter-clockwise around B;
2: Compute the rotation matrix R for α;
3: Rotate the pressure tensor P by applying the rotation matrix R;

Algorithm 2 is

R =
⎡
⎣ cosα + (1 − cosα)b2

1, (1 − cosα)b1b2 − sinα b3, (1 − cosα)b1 p3 + sinα b2

(1 − cosα)b2b1 + sinα b3, cosα + (1 − cosα)b2
2, (1 − cosα)b2 p3 − sinα b1

(1 − cosα)b3b1 − sinα b2, (1 − cosα)b3b2 + sinα b1, cosα + (1 − cosα)b2
3

⎤
⎦ . (B.17)

The pressure tensor rotation in line 3 can be performed as

P (�t) = R · P (0) · RT , (B.18)

in the expanded form

Pmn (t) =
∑

i

∑
j

P i j (0) Rmi Rnj

= P11 (0) Rm1 Rn1 + P21 (0) Rm2 Rn1 + P31 (0) Rm3 Rn1

+ P12 (0) Rm1 Rn3 + P22 (0) Rm2 Rn2 + P32 (0) Rm3 Rn2

+ P13 (0) Rm1 Rn3 + P23 (0) Rm2 Rn3 + P33 (0) Rm3 Rn3. (B.19)
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Appendix C. More details on the exact solution of the perpendicular sub-system

The perpendicular system evolves (E⊥;us⊥) and writes

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ⊥1

Ẽ⊥2

J̃1⊥1

J̃1⊥2

J̃2⊥1

J̃2⊥2
...

J̃N⊥1

J̃N⊥2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −ω1 0 −ω1 0 · · · −ωN 0
0 0 0 −ω1 0 −ω1 · · · 0 −ωN

ω1 0 0 �1 0 0 · · · 0 0
0 ω1 −�1 0 0 0 · · · 0 0
ω2 0 0 0 0 �2 · · · 0 0
0 ω2 0 0 −�2 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

ωN 0 0 0 0 0 · · · 0 �N

0 ωN 0 0 0 0 · · · −�N 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ⊥1

Ẽ⊥2

J̃1⊥1

J̃1⊥2

J̃2⊥1

J̃2⊥2
...

J̃N⊥1

J̃N⊥2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.1)

Here the subscripts 1 and 2 represent two orthogonal directions that form a right-handed coordinate when combined with 
the background magnetic field direction (along direction “3”).

Note that the coefficient matrix of Eq. (C.1) is a 2 (N + 1)×2 (N + 1) real, skew-symmetric matrix. Its nonzero eigenvalues 
are purely imaginary and come in pairs ±iω with conjugate eigenvectors. In total, the system has 2 (N + 1) eigenvalues and 
eigenvectors. However, to simplify the problem, we may consider the two components of a perpendicular vector as the real 
and imaginary parts of a complex vector, the equation above can be rearranged into a more compact form Eq. (B.11). The 
coefficient matrix M⊥ now is a (N + 1) × (N + 1) skew-Hermitian matrix and has N + 1 complex eigenvectors. The real 
and imaginary parts of the eigenvectors serve as the 1st and 2nd components of the perpendicular vectors, as we will see 
below.

C.1. Eigenvalues

Consider the eigenstructure of the perpendicular problem Eq. (B.11),

0 =
(

M⊥ − iωÎ
)

· q⊥ =

⎡
⎢⎢⎢⎢⎢⎣

−iω −ω1 −ω2 · · · −ωN

ω1 −i (ω + �1) 0 0 0
ω2 0 −i (ω + �2) 0 0
... 0 0

. . . 0
ωN 0 0 0 −i (ω + �N )

⎤
⎥⎥⎥⎥⎥⎦ · q⊥. (C.2)

The first row gives

−iωẼ⊥ =
∑

s

ωs J̃s⊥ (C.3)

while the remaining rows simultaneously give

Ẽ⊥ωs − i (ω + �s) J̃⊥s = 0, where s = 1, . . . , N (C.4)

⇒ J̃⊥s = Ẽ⊥
ωs

i (ω + �s)
. (C.5)

Substitute Eq. (C.5) into Eq. (C.3) leads to

−iωẼ⊥ =
∑

s

ωs
ωs

i (ω + �s)
Ẽ⊥ = −i

∑
s

ω2
s

ω + �s
Ẽ⊥ (C.6)

or

Ẽ⊥

(
ω −

∑
s

ω2
s

ω + �s

)
= 0 (C.7)

which has nontrivial solution of Ẽ⊥ when and only when Eq. (B.13) is satisfied. Since M⊥ is skew-Hermitian and iM⊥
is Hermitian, solving the equation above gives N + 1 real eigenvalues ω for iM⊥ and correspondingly N + 1 imaginary 
eigenvalues λ = iω for M⊥ .

Eq. (B.13) can be expanded as a N + 1 order polynomial and solved with any root finder. For three or fewer species, 
analytic formulae exists for the roots. For more species, we may find the roots as eigenvalues of a companion matrix, or 
using an iterative root finder.
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C.2. Eigenvectors

As indicated by Eq. (C.5), for each eigenvalue iω, there are two complex eigenvectors⎡
⎢⎢⎢⎢⎣

i
ω1

ω+�1
ω2

ω+�2
ω3

ω+�3
ω4

ω+�4

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

1
−i ω1

ω+�1−i ω2
ω+�2−i ω3
ω+�3−i ω4
ω+�4

⎤
⎥⎥⎥⎥⎦ . (C.8)

C.3. Real solution bases

From these two complex eigenvectors, we can determine two time-dependent real, orthogonal solution bases following 
the recipe in Sec. A.3. To determine the first real solution, we first write down the full, complex eigenvector of λ = iω as

v = a + ib, where a =

⎡
⎢⎢⎢⎢⎣

0
ω1

ω+�1
ω2

ω+�2
ω3

ω+�3
ω4

ω+�4

⎤
⎥⎥⎥⎥⎦ ,b =

⎡
⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎦ , (C.9)

then the time-dependent solution for the perpendicular problem is

veiωt = (a + ib) (cosωt + i sinωt)

= (a cosωt − b sinωt) + i (a sinωt + b cosωt)

=

⎡
⎢⎢⎢⎢⎣

− sinωt
ω1

ω+�1
cosωt

ω2
ω+�2

cosωt
ω3

ω+�3
cosωt

ω4
ω+�4

cosωt

⎤
⎥⎥⎥⎥⎦+ i

⎡
⎢⎢⎢⎢⎣

cosωt
ω1

ω+�1
sinωt

ω2
ω+�2

sinωt
ω3

ω+�3
sinωt

ω4
ω+�4

sinωt

⎤
⎥⎥⎥⎥⎦ . (C.10)

The real and imaginary parts in each row are the first and second components of a same perpendicular vector Ẽ⊥ or J̃s⊥ . 
Thus the time-dependent real solution is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ1

Ẽ2
...

J s1

J̃ s2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sinωt
cosωt

...
ωs

ω+�s
cosωt

ωs
ω+�s

sinωt
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.11)

Similarly, the second time-dependent real solution can be determined by

v = a + ib, where a =

⎡
⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎦ ,b = −

⎡
⎢⎢⎢⎢⎣

0
ω1

ω+�1
ω2

ω+�2
ω3

ω+�3
ω4

ω+�4

⎤
⎥⎥⎥⎥⎦ , (C.12)

⇒ veiωt = (a + ib) (cosωt + i sinωt)

= (a cosωt − b sinωt) + i (a sinωt + b cosωt)

=

⎡
⎢⎢⎢⎢⎣

cosωt
ω1

ω+�1
sinωt

ω2
ω+�2

sinωt
ω3

ω+�3
sinωt

ω4
ω+�4

sinωt

⎤
⎥⎥⎥⎥⎦+ i

⎡
⎢⎢⎢⎢⎣

sinωt
− ω1

ω+�1
cosωt

− ω2
ω+�2

cosωt
− ω3

ω+�3
cosωt

− ω4
ω+�4

cosωt

⎤
⎥⎥⎥⎥⎦ . (C.13)
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The second real solution is then⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ1

Ẽ2
...

J s1

J̃ s2
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosωt
sinωt

...
ωs

ω+�s
sinωt

− ωs
ω+�s

cosωt
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C.14)

Now we find two real, orthogonal solutions for λ = iω of different polarizations as in Eq. (B.14). In total, we recover all 
2 × (N + 1) real, orthogonal solutions to the 2 (N + 1) order Eq. (C.1).

Appendix D. Direct calculation of the locally implicit scheme

The linear, constant-coefficient ODEs Eqns. (30) can be solved directly instead of through matrix inversion, as described in 
Ref. [25]. This usually leads to faster computation. Here, we give a straightforward derivation, and fix a few minor mistakes 
in Ref. [25]. Note that we do not consider collisions, while Ref. [25] did.

We start by noting that the general problem

A = R + A × B, (D.1)

where R and B are knowns, has the solution

A = R + BB · R − B × R

1 + B2
= R + B2bb · R − Bb × R

1 + B2
. (D.2)

A relevant problem

C = R + C × B + ξbb · C, (D.3)

where ξ 	= 1 and b is the unit vector along B, has the solution

C = R + BB · R − B × R

1 + B2
+ ξ

1 − ξ
bb · R. (D.4)

The first line of Eqns. (30) can be re-arranged into the form of Eqn. (D.1),

J̄s =
(

Jn
s + ε0ω

2
s �t

2
Ē
)

+ J̄s ×
(

�s�t

2
b
)

, (D.5)

thus has the solution

J̄s =
(

1 + �2
s �t2

4

)−1 (
J∗s + �2

s �t2

4
bb · J∗s − b × �s�t

2
J∗s
)

, (D.6)

where

J∗s ≡ Jn
s + ε0ω

2
s �t

2
Ē. (D.7)

Note that Eqn. (15) of Ref. [25] corresponds to Eqn. ((D.6)) above, but it misses a leading coefficient 
(
1 + �2

s �t2/4
)−1

and 
the dimensionality is not correct.

Substituting Eqn. (D.6) back into the second line of Eqns. (30) yields an equation of Ē in the form of Eqn. (D.3):

Fn+1/2 = Fn + 1
2 K

1 + 1
4ω2

0

+ 1

1 + 1
4ω2

0

δ

8
b × Fn+1/2

− 1

1 + 1
4ω2

0

γ 2

16
bb · Fn+1/2, (D.8)

where F ≡ ε0E, and

K ≡ −�t
∑

s

[(
1 + �2

s �t2

4

)−1

(
Jn
s + �2

s �t2

bb · Jn
s − b × �s�t

Jn
s

)]
. (D.9)
4 2
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Following Eqn. (D.4) and after some rather tedious algebraic re-arrangement, we obtain

F̄ = + 1

1 + 1
4ω2

0 + 1
64�2

(
Fn + 1

2
K
)

1
64 �2 − 1

16γ 2(
1 + 1

4ω2
0 + 1

64�2
) (

1 + 1
4ω2

0 + 1
16γ 2

)bb ·
(

Fn + 1

2
K
)

+
1
8 δ(

1 + 1
4ω2

0 + 1
64�2

) (
1 + 1

4ω2
0

)b ×
(

Fn + 1

2
K
)

. (D.10)

Here, we use the following notations modified from Eqn. (11) of Ref. [25]:

ω2
0 ≡

∑
s

ω2
s �t2

1 + �2
s �t2/4

,

γ 2 =
∑

s

ω2
s �2

s �t4

1 + �2
s �t2/4

, δ =
∑

s

ω2
s �s�t3

1 + �2
s �t2/4

, (D.11)

� ≡ δ2

1 + ω2
0

.

This result is consistent with Eqn. (13) of Ref. [25] though the latter missed a few terms.
In the actual implementation, Eqn. (D.10) is computed first to get Ē, which is substituted in Eqn. (D.6) to compute J̄s for 

each species. The final updated currents and electric fields are then determined by Jn+1
s = 2J̄s − Jn

s and En+1 = 2Ē − En . In 
an informal two-fluid five-moment test, the exact source solution described here is approximately 5× times faster than the 
solution through matrix inversion using external numerical package.

Appendix E. Stability of the locally implicit scheme

E.1. Von Neumann stability analysis

Following the Von Neumann analysis, we assume all quantities depend on time as eiωt :

qn+1
s = qn

s eiω�t , q = [E; Js]T . (E.1)

The time-centered quantities are

q̄s = qn+1
s + qn

s

2
= qn

s
1 + eiω�t

2
. (E.2)

For simplicity, we consider the normalized quantities Ẽ and J̃s as defined in Appendix B in this derivation.
First, considering only the plasma oscillation, i.e., neglecting the cyclotron term Js × �s , the locally implicit scheme gives{ ¯̃E = Ẽn − �t

2 ωps
∑

s
¯̃Js.

¯̃Js = J̃n
s + �tωs

2
¯̃E (E.3)

or

qn 1 + eiω�t

2
= qn + �t

2
M‖qn 1 + eiω�t

2
, (E.4)

where q =
[

Ẽ; J̃s

]T
and the coefficient matrix is defined in Eqn. (B.7). Eqn. (E.4) can be rearranged to get

qn eiω�t − 1

2
= �t

2
M‖qn eiω�t + 1

2
(E.5)

or

qni tan

(
ω�t

2

)
= �t

2
M‖qn. (E.6)

Here, we used the relation

1 − e−iθ = 2i sin
θ

e−iθ/2 and 1 + e−iθ = 2 cos
θ

e−iθ/2. (E.7)

2 2
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Recall that M‖ has nonzero eigenvalues ±iωp , therefore Eqn. (E.6) gives the stability criterion for plasma oscillation(
2

�t

)2

tan2
(

ω�t

2

)
= ω2

p . (E.8)

This equation has only real solutions for ω thus eliminates the possibility of numerical instability.
Similarly, we may compute the stability criteria for the perpendicular problem. The results will be of the form(

2

�t

)2

tan2
(

ω�t

2

)
= ω2⊥ (E.9)

where iω⊥ is an eigenvalue of the matrix M⊥ defined in Eqn. (B.12). Again, the time-step is not restricted by ω⊥ , which 
contains both plasma and cyclotron frequencies.

E.2. Properties of the implicit midpoint method

The locally implicit scheme is essentially an implicit midpoint method. Thus it is useful to understand the general 
properties of the method. Consider the initial value problem of an ODE,

y′(t) = f (t, y(t)), y(t0) = y0.

The implicit midpoint method is given by

yn+1 = yn + hf

(
tn + h

2
,

yn + yn+1

2

)
. (E.10)

It can be written as an implicit Runge-Kutta method

k = f

(
tn + h

2
, yn + h

2
k

)
yn+1 = yn + hk (E.11)

which contains the implicit Euler method with step size h/2 as its first part. We may also write the method as

ȳ = yn + h

2
f

(
tn + h

2
, ȳ

)

yn+1 = yn + hf

(
tn + h

2
, ȳ

)
(E.12)

since

yn+1 − 2 ȳ = yn − 2yn = −yn ⇔ ȳ = yn + yn+1

2
. (E.13)

An additional observation is that the second step in Eqn. (E.12) can then be replaced by yn+1 = 2 ȳ − yn . This simplifies the 
implementation and is used in our code.

The implicit midpoint method has local truncation error of order O  
(
h3

)
hence global error of order O  

(
h2

)
. As shown in 

the von Neumann stability diagram Fig. 6, for a problem y = eλt , the stability region of the method is the entire half plane 
with Im (λ)h ≤ 0, thus the method is unconditionally stable for nongrowing problems. For an purely oscillatory problem, 
like our source update equations, λ lies right on the border of the stability region (the imaginary axis), indicating exact 
preservation of oscillation magnitude.

Appendix F. The eigensystem of the ten-moment model

To determine the eigensystem of the homogeneous part of the ten-moment equations we first write, in one-dimension, 
the left-hand side of Eqns. (1), (2) and (12), in the quasilinear form

∂tv + A∂1v = 0 (F.1)

where v is the vector of primitive variables and A is a matrix of coefficients. For the ten-moment system we have

v = [
ρ, u1, u2, u3, P11, P12, P13, P22, P23, P33

]T (F.2)

where ρ ≡ mn and
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Fig. 6. The gray shadows represent the stability region of the implicit midpoint method on the complex plane. A purely oscillatory problem lies on the 
imaginary axis, which is exactly the boundary of the stability region. Therefore, when applied to a purely oscillatory problem, the locally midpoint method 
conserves the amplitude, i.e., no damping or amplifying.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 ρ 0 0 0 0 0 0 0 0
0 u1 0 0 1/ρ 0 0 0 0 0
0 0 u1 0 0 1/ρ 0 0 0 0
0 0 0 u1 0 0 1/ρ 0 0 0
0 3P11 0 0 u1 0 0 0 0 0
0 2P12 P11 0 0 u1 0 0 0 0
0 2P13 0 P11 0 0 u1 0 0 0
0 P22 2P12 0 0 0 0 u1 0 0
0 P23 P13 P12 0 0 0 0 u1 0
0 P33 0 2P13 0 0 0 0 0 u1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.3)

The eigensystem of this matrix can be easily obtained either by hand or a computer algebra package. The results are 
described below.

The eigenvalues of the system are given by

λ1,2 = u1 −√
P11/ρ (F.4)

λ3,4 = u1 +√
P11/ρ (F.5)

λ5 = u1 −√
3P11/ρ (F.6)

λ6 = u1 +√
3P11/ρ (F.7)

λ7,8,9,10 = u1 (F.8)

To maintain hyperbolicity we must hence have ρ > 0 and P11 > 0. In multiple dimensions, in general, the diagonal elements 
of the pressure tensor must be positive. When P11 = 0 the system reduces to the cold fluid equations which is known to be 
rank deficient and hence not hyperbolic as usually understood.2 Also notice that the eigenvalues do not include the usual 
fluid sound-speed cs = √

5p/3ρ but instead have two different propagation speeds c1 = √
P11/ρ and c2 = √

3P11/ρ . This is 
because the (neutral) ten-moment system does not go to the correct limit of Euler equations in the absence of collisions. In 
fact, it is collisions that drive the pressure tensor to isotropy, but do not appear in the homogeneous ten-moment system.

The right eigenvectors (column vectors) are given below.

r1,3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

∓c1
0
0

P11
0

2P12
P13
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r2,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

∓c1
0
0

P11
0

P12
2P13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.9)

2 For hyperbolicity the matrix A must posses real eigenvalues and a complete set of linearly independent right eigenvectors. For the cold fluid system 
we only have a single eigenvalue (the fluid velocity) and a single eigenvector. This can lead to generalized solutions like delta shocks.
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and

r5,6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ P11
∓c2 P11
∓c2 P12
∓c2 P13

3P 2
11

3P11 P12
3P11 P13

P11 P22 + 2P 2
12

P11 P23 + 2P12 P13

P11 P33 + 2P 2
13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.10)

and

r7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.11)

We can now compute the left eigenvectors (row vectors) by inverting the matrix with right eigenvectors stored as 
columns. This ensures the normalization lprk = δpk , where the lp are the left eigenvectors. On performing the inversion we 
have

l1,3 =
[

0 ± P12

2c1 P11
∓ 1

2c1
0 − P12

2P 2
11

1

2P11
0 0 0 0

]
(F.12)

l2,4 =
[

0 ± P13

2c1 P11
0 ∓ 1

2c1
− P13

2P 2
11

0
1

2P11
0 0 0

]
(F.13)

and

l5,6 =
[

0 ∓ 1

2c2 P11
0 0

1

6P 2
11

0 0 0 0 0
]

(F.14)

and

l7 =
[

1 0 0 0 − 1

3c2
1

0 0 0 0 0
]

(F.15)

l8 =
[

0 0 0 0
4P 2

12 − P11 P22

3P 2
11

−2P12

P11
0 1 0 0

]
(F.16)

l9 =
[

0 0 0 0
4P12 P13 − P11 P23

3P 2
11

− P13

P11
− P12

P11
0 1 0

]
(F.17)

l10 =
[

0 0 0 0
4P 2

13 − P11 P33

3P 2
11

0 −2P13

P11
0 0 1

]
(F.18)

Most often, for numerical simulations, the eigensystem of the conservation form of the homogeneous system is needed. 
This eigensystem is related to the eigensystem of the quasilinear form derived above. To see this consider a conservation 
law

∂tq + ∂1f = 0 (F.19)

where f = f(q) is a flux function. Now consider an invertible transformation q = ϕ(v). This transforms the conservation law 
to

∂tv + (ϕ′)−1 Df ϕ′∂1v = 0 (F.20)
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where ϕ′ is the Jacobian matrix of the transformation and Df ≡ ∂f/∂q is the flux Jacobian. Comparing this to Eqn. (F.1) we 
see that the quasilinear matrix is related to the flux Jacobian by

A = (ϕ′)−1 Df ϕ′ (F.21)

This clearly shows that the eigenvalues of the flux Jacobian are the same as those of the quasilinear matrix while the right 
and left eigenvectors can be computed using ϕ′rp and lp(ϕ′)−1 respectively.

For the ten-moment system the required transformation is

q = ϕ(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu1

ρu2

ρu3

ρu1u1 + P11

ρu1u2 + P12

ρu1u3 + P13

ρu2u2 + P22

ρu2u3 + P23

ρu3u3 + P33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.22)

For this transformation we have

ϕ′(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
u1 ρ 0 0 0 0 0 0 0 0
u2 0 ρ 0 0 0 0 0 0 0
u3 0 0 ρ 0 0 0 0 0 0

u1u1 2ρu1 0 0 1 0 0 0 0 0
u1u2 ρu2 ρu1 0 0 1 0 0 0 0
u1u3 ρu3 0 ρu1 0 0 1 0 0 0
u2u2 0 2ρu2 0 0 0 0 1 0 0
u2u3 0 ρu3 ρu2 0 0 0 0 1 0
u3u3 0 0 2ρu3 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.23)

The inverse of the transformation Jacobian is

(ϕ′)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
−u1/ρ 1/ρ 0 0 0 0 0 0 0 0
−u2/ρ 0 1/ρ 0 0 0 0 0 0 0
−u3/ρ 0 0 1/ρ 0 0 0 0 0 0

u1u1 −2u1 0 0 1 0 0 0 0 0
u1u2 −u2 −u1 0 0 1 0 0 0 0
u1u3 −u3 0 −u1 0 0 1 0 0 0
u2u2 0 −2u2 0 0 0 0 1 0 0
u2u3 0 −u3 −u2 0 0 0 0 1 0
u3u3 0 0 −2u3 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.24)
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