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1. Governing Equations

In this document I derive and list equations governing axisymmetric mul-
tifluid equilibria. This derivation is largely based on the paper by Steinhauer
and Ishida[1] except that I do not normalize the equations. Also, I do not
pursue the “nearby fluids” concept introduced in that paper.

The basic governing equations are the steady-state two-fluid equations in
which the electron mass is set to zero. For each fluid the continuity and
pressure equations are

∇ · (nαuα) = 0 (1)

uα · ∇pα = −γpα∇ · uα (2)

For each ion species the momentum equation is

uα · ∇uα = − ∇pα
mαnα

+
qα
mα

(E + uα ×B) (3)

while for the electrons, the momentum equation reduces to

0 = −∇pe − ene(E + ue ×B). (4)

In these equations mα and qα are the species charge and mass respectively,
nα is the number density, uα the velocity and pα the pressure. For smooth
flows the pressure equation can be replaced by an advection equation for
the entropy that is obtained by setting pα = nγαe(γ−1)sα to give

uα · ∇sα = 0. (5)

The electromagnetic field is determined from the steady-state Maxwell equa-
tions

∇×B = µ0J (6)

∇×E = 0 (7)

∇ ·B = 0 (8)

where J =
∑

α qαnαuα is the total plasma current. Finally, the condition of
quasi-neutrality is used to compute the electron density.
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2. Flux Functions

As the divergence of the fluid momentum and magnetic field vanishes (see
Eq. (1) and Eq. (8)), in axisymmetric geometry we can write, using identities
(39) and (43),

uα = uαφeφ +
1

rnα
∇ψα × eφ (9)

B = Bφeφ +
1

r
∇ψ × eφ (10)

where uαφ and Bφ are the toroidal fluid velocity and magnetic field respec-
tively and ψα(r, z) and ψ(r, z) are scalar flux functions that determine the
poloidal fluid velocity and magnetic fields. The total plasma current can be
hence expressed as

J =
∑
α

qαnαuαφ +
1

r

∑
α

qα∇ψα × eφ (11)

where the summation is over the electrons and all ion species in the plasma.
Using Eq. (6) and the identity (41) in this equation for the current we get

rBφ = µ0
∑
α

qαψα (12)

−4
∗ψ

r
= µ0

∑
α

qαnαuαφ. (13)

These first of these equations relates the toroidal magnetic field to the plasma
flux functions while the second one relates the magnetic field flux function to
the total toroidal current. Alternately, the second equation can be rewritten
as an equation for the toroidal electron current in terms of the ion toroidal
currents and the magnetic field flux function.

To simplify the fluid momentum equations we introduce the canonical
momentum defined by

Pα = mαuα + qαA (14)

where A is the vector potential in terms of which B = ∇×A. We also define
the canonical vorticity as Ωα = ∇×Pα = mαωα+ qαB where ωα = ∇×uα
is the fluid vorticity. As ∇ ·Ωα = 0 we can write

Ωα = Ωαφeφ +
1

r
∇Yα × eφ (15)

where Yα(r, z) is a canonical vorticity flux function. Using the definition of
canonical vorticity and the identity (44) to express ωα and using Eq. (10)
to express the magnetic field we get, comparing to Eq. (15),

Ωαφ = −mα

r
4∗nα

ψα + qαBφ (16)

Yα = mαruαφ + qαψ. (17)
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We next use the identity

uα · ∇uα + uα ×∇× uα = ∇(u2
α/2) (18)

and the thermodynamic relation

∇pα
nα

= ∇hα − Tα∇sα (19)

where hα = γT/(γ−1) is the fluid enthalpy1 and Tα is the fluid temperature
(defined as pα = nαTα) in the momentum equation we get

∇
(
hα +mαu2

α/2 + qαφ
)

= Tα∇sα + uα ×Ωα. (20)

This equation is only valid for the ions. For the electrons we need to set
me = 0 and qe = −e to get the simplified electron momentum equation as

∇ (he − eφ) = Te∇se − eue ×B (21)

where we have use the fact that for electrons the canonical vorticity is simply
Ωe = −eB.

3. Surface Functions. Components of Momentum Equations

To derive the final set of equations governing the multifluid equilibrium we
need to look at the components of the ion and electron momentum equations.
First, we look at the toroidal component by taking the dot product with eφ.
As the toroidal component (in axisymmetric geometry) of the gradient of a
scalar vanishes, we get the conditions

0 = (uα ×Ωα) · eφ (22)

0 = (ue ×B) · eφ. (23)

Using the identity (47) we can show that these reduce to

0 = (∇ψα ×∇Yα) · eφ (24)

0 = (∇ψe ×∇ψ) · eφ. (25)

This shows2 that the flux functions ψα and ψe are surface functions, i.e.

ψα = ψα(Yα) (26)

ψe = ψe(ψ). (27)

1The usual definition of enthalpy for an ideal fluid is h = γT/(γ − 1) + mu2/2. In the
definition adopted here the kinetic energy contribution is left out but taken into account
(for the ions) in the momentum equation.
2Whenever we have scalar functions that are related by ∇ψ(r, z) = K(r, z)∇φ(r, z) we

can show ψ(r, z) = ψ(φ(r, z)) i.e., the function ψ is can be written as a surface function

of the scalar field φ instead of (r, z). This also implies that ∇ψ = ψ
′∇φ, where the prime

denotes differentiation with respect to φ.
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With these expressions we can write the poloidal component of the ion
velocity (see Eq. (9)) as

uαp =
1

rnα
∇ψα × eφ =

ψ
′
α

rnα
∇Yα × eφ =

ψ
′
α

nα
Ωαp (28)

where Ωαp is the poloidal component of the canonical vorticity. Similarly,
the poloidal component of the electron velocity is

uep =
1

rne
∇ψe × eφ =

ψ
′
e

rne
∇ψ × eφ =

ψ
′
e

ne
Bp (29)

where Bp is poloidal magnetic field. Hence, the ion and electron poloidal
flows are not, in general, parallel to each other.

We can show that the fluid entropy are surface functions by using identity
(48) in Eq. (5) to get

1

rnα
(∇sα ×∇ψα) · eφ = 0 (30)

which allows us to write sα = sα(Yα) for the ions and se = se(ψ) for the
electrons.

We now take the component of the ion and electron momentum equations
along uα. The right hand side vanishes (see Eq. (5)) which yields, upon using
identity (48)

hα +
1

2
mαu2

α + qαφ = Hα(Yα) (31)

for the ions and

he − eφ = He(ψ) (32)

for the electrons. These equations are a form of Bernoulli’s equations and
state that the total enthalpy (including the electrostatic potential energy)
of each fluid is constant on a flux surface.

Finally, we take the component of the ion and electron momentum equa-
tions along ∇Yα and ∇ψ respectively. These directions are perpendicular
to the poloidal components of the ion and electron velocities and hence will
yield independent set of equations. For ions taking the dot product with
∇Yα we get

H
′
α∇Yα · ∇Yα = Tαs

′
α∇Yα · ∇Yα +∇Yα · (uα ×Ωα). (33)

The last term in this equation can be simplified using the identity (47) to
get, after some rearrangements, the differential equation

mαψ
′
αr

2∇ ·

(
ψ
′
α

r2nα
∇Yα

)
= r
(
ψ
′
αqαBφ − nαuαφ

)
+ nαr

2
(
H
′
α − Tαs′α

)
(34)
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Here, we have rewritten the density-weighted Grad-Shafranov operator as

r2∇ ·
(

1

r2nα
∇ψα

)
= r2∇ ·

(
ψ
′
α

r2nα
∇Yα

)
(35)

to make the ion flux function Yα the independent variable. For electrons
taking the dot product with ∇ψ we get

H
′
e∇ψ · ∇ψ = Tes

′
e∇ψ · ∇ψ −∇ψ · (eue ×B). (36)

As we did for the ions, the last term in this equation can be simplified using
the identity (47) to get, after some rearrangements, the equation

reneueφ = rJeφ = reBφψ
′
e − ner2

(
H
′
e − Tes′e

)
(37)

Note that the left hand side of this equation involves Jeφ, i.e., the toroidal
component of the electron current. This can be eliminated from Eq. (13) to
get a differential equation for the magnetic field flux function ψ(r, z)

4∗ψ = µ0r
(
eBφψ

′
e − Jiφ

)
− µ0ner2

(
H
′
e − Tes′e

)
(38)

where Jiφ ≡
∑

α qαnαuαφ and the sum is taken over all ion species3.

4. Summary

We have derived a set of equations that describes multifluid equilibrium
configurations. The electron surface functions are ψe(ψ), se(ψ) and He(ψ).
For each ion species we have the same set of surface functions but these are
now functions of a different flux function, Yα: ψα(Yα), sα(Yα) and Hα(Yα).
These functions are arbitrary and need to be specified before the equations
can be solved.

Appendix A. Useful Identities

Let a be an axisymmetric vector field satisfying ∇ · a = 0. Then, in
cylindrical coordinates, it can be written as

a = aφeφ +
1

r
∇ψ × eφ, (39)

where eφ are unit vectors and ψ = ψ(r, z) is an arbitrary function. In
component form

ar = −1

r

∂ψ

∂z
, az =

1

r

∂ψ

∂r
. (40)

The curl of a is given by

∇× a = −4
∗ψ

r
eφ +

1

r
∇(raφ)× eφ, (41)

3Comparing the ion and electron equation we see a difference: the total ion current appears
in the electron equation while the ion velocity appears in the ion equation. The reason for
this is that the units of ψ and ψα are not the same.
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where 4∗ is the Grad-Shafranov operator defined by

4∗ψ ≡ ∂2ψ

∂z2
+ r

∂

∂r

(
1

r

∂ψ

∂r

)
= r2∇ ·

(
1

r2
∇ψ
)

(42)

If a is a axisymmetric vector field and f(r, z) is a scalar function and
∇ · (fa) = 0, then

a = aφeφ +
1

rf
∇ψ × eφ. (43)

The curl of a is given by

∇× a = −
4∗fψ
r

eφ +
1

r
∇(raφ)× eφ, (44)

where 4∗f is a f-weighted Grad-Shafranov operator defined by

4∗fψ ≡
∂

∂z

(
1

f

∂ψ

∂z

)
+ r

∂

∂r

(
1

rf

∂ψ

∂r

)
= r2∇ ·

(
1

r2f
∇ψ
)

(45)

Let a = aφeφ+∇ψa×eφ/far and b = bφeφ+∇ψb×eφ/fbr where fa = fa(r, z)
and fb = fb(r, z) are scalar fields. Then

a× b =
aφ
rfb
∇ψb −

bφ
rfa
∇ψa −

1

r2fafb
(∇ψa × eφ · ∇ψb)eφ (46)

=
aφ
rfb
∇ψb −

bφ
rfa
∇ψa +

1

r2fafb
∇ψa ×∇ψb. (47)

Let a = aφeφ +∇ψ × eφ/r and f = f(r, z) is a scalar field. Then

a · ∇f =
1

r
(∇f ×∇ψ) · eφ. (48)
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